Solutions to Mid-term \#1

Problem 1: ($\mathbf{1 0} \mathbf{~ p t s)}$) You are given the function

$$
g(x)=\frac{2 x^{2}+4 x-16}{x^{2}-5 x+6}
$$

Calculate $\lim _{x \rightarrow-4} f(x), \lim _{x \rightarrow 2} f(x), \lim _{x \rightarrow 3+} g(x)$ and $\lim _{x \rightarrow 3^{-}} g(x)$. Graph $g(x)$ near 3. What is/are the horizontal asymptote(s) for $g(x)$?

First we factor numerator and denominator to get

$$
g(x)=\frac{2(x+4)(x-2)}{(x-2)(x-3)}
$$

The function isn't defined at 2 , but when $x \neq 2$, it is equal to $\frac{2(x+4)}{x-3}$. Thus
a) $\lim _{x \rightarrow-4} g(x)=0$
b) $\lim _{x \rightarrow 2} g(x)=\frac{2(6)}{-1}=-12$
c) $\lim _{x \rightarrow 3^{+}} g(x)=+\infty$ since $x+4>0$ and $x-3>0$ when $x>3$. On the other hand, when $-4<x<3$ we have $x+4>0$ and $x-3<0$, so $\lim _{x \rightarrow 3^{-}} g(x)=-\infty$. For the graph come Monday.
d) To find the horizontal asymptotes, calculate $\lim _{x \rightarrow-\infty} g(x)$ and $\lim _{x \rightarrow \infty} g(x)$. Both are done thus:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{2+\frac{4}{x}-\frac{16}{x^{2}}}{1-\frac{5}{x}+\frac{6}{x^{2}}}=\frac{2}{1}=2
$$

Problem 2: (10 pts)

(a) Using any method your prefer, compute the derivative of

$$
\begin{gathered}
f(x)=\sin \left(\frac{\pi}{2}+x^{2}\right) \\
\frac{d}{d x} f(x)=\frac{d}{d x} \sin \left(\frac{\pi}{2}+x^{2}\right)=\cos \left(\frac{\pi}{2}+x^{2}\right) \frac{d}{d x} x^{2}=2 x \cos \left(\frac{\pi}{2}+x^{2}\right)
\end{gathered}
$$

(b) Use your calculation from part (a) to evaluate

$$
\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{2}+h^{2}\right)-1}{h}
$$

Justify your answer.

How to use the previous part? Try the limit definition of the derivative:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{2}+(a+h)^{2}\right)-\sin \left(\frac{\pi}{2}+a^{2}\right)}{h}
$$

To match this with the derivative we need $\sin \left(\frac{\pi}{2}+a^{2}\right)=1$ and $\sin \left(\frac{\pi}{2}+(a+h)^{2}\right)=\sin \left(\frac{\pi}{2}+h^{2}\right)$. The easiest thing to try is $a=0$. Both equalities are then satisfied, so the value of the limit is simply $f^{\prime}(0)$. From part (a) $f^{\prime}(x)=2 x \cos \left(\frac{\pi}{2}+x^{2}\right)$ and $f^{\prime}(0)=0$.
(c) What is the equation of the tangent line to $f(x)$ at $x=0$?

From part (b), the slope of this tangent line is 0 (or use part (a) directly). It must go through the point $\left(0, \sin \left(\frac{\pi}{2}+0^{2}\right)=\right.$ $(0,1)$. Using the point-slope form the equation of the tangent line is $y-1=0(x-0)$ or $y=1$.
Problem 3: (10 pts) Is there a solution to

$$
x^{2}-\cos x=0
$$

for some $x \geq 0$?
x^{2} is continuous and $\cos x$ is continuous. Therfore $f(x)=x^{2}-\cos x$ is continuous. However, $f(0)=0^{2}-\cos 0=-1$, whereas $f(\pi)=\pi^{2}-\cos \pi=\pi^{2}+1$. Since $f(0)<0$ and $f(\pi)>0$, by the intermediate value theorem there is a point $c \in[0, \pi]$ such that $f(c)=0$. This is equivalent to $c^{2}-\cos (c)=0$.

Problem 4: ($\mathbf{1 0} \mathbf{p t s}$) Suppose $h(x)$ is the function

$$
h(x)=\left\{\begin{array}{cc}
\frac{\sin (\sqrt{x}-1)}{x-1} & \text { when } 0 \leq x<1 \\
\frac{1}{4}(x+1) & \text { when } x \geq 1
\end{array}\right.
$$

Where is $h(x)$ continuous?

As $\frac{1}{4}(x+1)$ is a polynomial it is continuous on $(1, \infty) . x-1, \sqrt{x}-1$ and $\sin x$ are continuous for $x \geq 0$. Since the composition and quotient of continuous functions is continuous, $h(x)$ is also continuous on $[0,1)$. That leaves the point $x=1$ to be checked. We know $h(1)=\frac{1}{4}(1+1)$, so we need to check 1) whether $\lim _{x \rightarrow 1} h(x)$ exists, and 2) does it equal $\frac{1}{2}$. We calculate the left and right hand limits:

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{4}(x+1)=\frac{1}{2} \\
\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} \frac{\sin (\sqrt{x}-1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{\sin (\sqrt{x}-1)}{\sqrt{x}-1} \cdot \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{1}{\sqrt{x}+1}=\frac{1}{2}
\end{gathered}
$$

Since these both exist and are equal, we have $\lim _{x \rightarrow 1} h(x)=\frac{1}{2}=h(1)$. The function is also continuous at 1 . Therefore, the function is continuous on $[0, \infty)$.

Problem 5:(10 pts) Let

$$
f(x)= \begin{cases}2 x+1 & x \leq 1 \\ 3 x-1 & x>1\end{cases}
$$

If I choose any $\epsilon>0$ is it always possible to find $\delta>0$ so that $|f(x)-3|<\epsilon$ for all $0<x-1<\delta$? What does this say in terms of limits? (Read the inequalities carefully!!)

Note that we are only asking for $0<x-1<1$ or $1<x<1+\delta$. The rest is like the definition of the limit. So, whether I can find such a δ for any ϵ depends upon whether $\lim _{x \rightarrow 1^{+}} f(x)=3$. The limit is from the right since we are only concerned with $x>1$. However, $\lim _{x \rightarrow 1^{+}} f(x)=3(1)-1=2$, so the answer is NO.

Problem 6: (10 pts) Suppose that $f(x)$ has domain equal to \mathbb{R} and $-x^{2} \leq f(x) \leq x^{2}$ near $x=0$. Use the definition of the derivative to show that $f^{\prime}(0)=0$.

We use the definition of the derivative on $f(x)$ at 0 , so

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

All we know about $f(x)$ is that $-x^{2} \leq f(x) \leq x^{2}$. Plugging in $x=0$ tells us that $0 \leq f(0) \leq 0$, so $f(0)=0$. Using what we know, we also deduce $-|x| \leq \frac{f(x)}{x} \leq|x|$. The absolute values appear because if $x<0$ and we divide, we change the direction of the \leq signs. To handle both $x>0$ and $x<0$, we need the absolute value signs (I let this slide while grading, but you should be aware of this problem). But now we can use the squeeze theorem to see that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$. Therefore $f^{\prime}(0)=0$.

Use this fact to show that

$$
y= \begin{cases}x^{2} & x \in \mathbb{Q} \\ -x^{2} & x \notin \mathbb{Q}\end{cases}
$$

is differentiable at 0 . Explain why it is not differentiable anywhere else. (This is an example of a function that is differentiable at only one point!)

The function is differentiable at 0 because it clearly satisfies $-x^{2} \leq y \leq x^{2}$ (in fact is always equal to one or the other of these). By the preceding, $\left.y^{\prime}\right|_{x=0}=0$. On the other hand, between any two rationals there is an irrational, and between any two irrationals there is a rational. So when $x \neq 0$, the function is constantly jumping back and forth across the x-axis. In short it is not continuous at any other point, and thus cannot be differentiable there.

