Homework for Math 152H-1 November 27

Reading: Read pgs 339-342
Homework: For each of the following functions on the prescribed interval, find
(a) The right hand Riemann sum, using n sub-intervals of equal length, in Σ-notation.
(b) An expression for (a) using only n (no Σ-notation). For this use the formulas on pg 338 and

$$
\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\sin \frac{3 \pi}{n}+\ldots+\sin \frac{(n-1) \pi}{n}=\cot \frac{\pi}{2 n}
$$

(c) Compute the limit as $n \rightarrow \infty$.
(d) Compare the result to the value of the definite integral computing the same area.

1. $f(x)=3$ on $[1,4]$
2. $f(x)=2 x$ on $[2,5]$
3. $f(x)=\sin x$ on $[0, \pi]$
4. $f(x)=4-x^{2}$ on $[-2,2]$
5. Use Riemann sums to find the area under $y=\sqrt{x}$ on $[0,1]$. To do this it is necessary to use non-equal length sub-intervals. Instead use the partition:

$$
0<\frac{1}{n^{2}}<\frac{4}{n^{2}}<\ldots<\frac{i^{2}}{n^{2}}<\ldots<\frac{(n-1)^{2}}{n^{2}}<1
$$

and the formula $(i+1)^{2}-i^{2}=2 i+1$.

