Homework for Math 152H-1 October 9

Reading: Start reading section 4.1, make sure you know the definitions.

Homework: Quadratic Approximation

(1) You have a function $f(x)$ which has both first and second derivatives at $x=a$. The quadratic approximation to $f(x)$ at $x=a$ is the parabola:

$$
Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}
$$

Show that $Q(x)$ has the following properties:

1. $Q(a)=f(a)$
2. $Q^{\prime}(a)=f^{\prime}(a)$
3. $Q^{\prime \prime}(a)=f^{\prime \prime}(a)$
(2) Find the linearization and quadratic approximations to the following functions at $x=0$
4. $y=x^{2}+2 x$
5. $y=\cos x$
6. $y=(1+x)^{-1}$
7. $y=x\left(x^{2}-1\right)^{3}$
(3) Using $f(x)=\sqrt{x}$ near $x=4$ calculate three approximations of $\sqrt{4.01}: 1) f(4), 2) L_{4}(4.01)$ and $Q_{4}(4.01)$ where L_{4} and Q_{4} are the linearization and quadratic approximations to $f(x)$ at $x=4$. Which is closest to the actual value $\sqrt{4.01}=2.00249843 \ldots ?$
(4) Find the linearization and quadratic approximation of the curve defined by $x^{2} y+y^{3} x=6$ near (2,1). Describe the shape of the curve near this point. Find an approximate value of y such that $(2.01)^{2} y+2.01 y^{3}=6$. (Hint: use your linearization)
(5) You are given that there is a function $y=f(x)$ such that $f^{\prime}(x)=1-[f(x)]^{2}$ and $f(0)=2$. Plug 0 into the equation for the derivative to find $f^{\prime}(0)$. Can you find $f^{\prime \prime}(0)$? What are the linearization and quadratic approximation to $f(x)$ at $x=0$?
(6) You have a function $f(x)$ which has first, second, and third derivatives at $x=a$. Find the values of a_{0}, a_{1}, a_{2}, and a_{3} so that $C(x)=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+a_{3}(x-a)^{3}$ has the following properties:
8. $C(a)=f(a)$
9. $C^{\prime}(a)=f^{\prime}(a)$
10. $C^{\prime \prime}(a)=f^{\prime \prime}(a)$
11. $C^{\prime \prime \prime}(a)=f^{\prime \prime \prime}(a)$

Find $C(x)$ for $y=x^{2}+2 x$ and $y=\sin x$ at $x=0$.
(7) One way of saying that a function $f(x)$ is twice differentiable at $x=a$ is to say that we can find numbers b_{0}, b_{1}, and b_{2} so that

$$
E(h)=f(a+h)-\left(b_{0}+b_{1} \cdot h+b_{2} \cdot h^{2}\right)
$$

satisfies $\lim _{h \rightarrow 0} \frac{E(h)}{h^{2}}=0$. If we can do this, $b_{0}+b_{1} \cdot h+b_{2} \cdot h^{2}$ is just $Q(a+h)$ where $Q(x)$ is the quadratic approximation to $f(x)$ at $x=a$. Suppose we have $f(x)$ and $g(x)$ twice differentiable with

$$
\begin{aligned}
& f(a+h)=f(a)+f^{\prime}(a) \cdot h+\frac{f^{\prime \prime}(a)}{2} \cdot h^{2}+E_{1}(h) \\
& g(a+h)=g(a)+g^{\prime}(a) \cdot h+\frac{g^{\prime \prime}(a)}{2} \cdot h^{2}+E_{2}(h)
\end{aligned}
$$

Take the product and write:

$$
f(a+h) g(a+h)=c_{0}+c_{1} \cdot h+c_{2} \cdot h^{2}+E(h)
$$

where c_{0}, c_{1}, and c_{2} are numbers. Verify that $\lim _{h \rightarrow 0} \frac{E(h)}{h^{2}}=0\left(E(x)\right.$ will depend upon many different terms including E_{1} and E_{2}). Explain how you can find the first and second derivatives of $f(x) \cdot g(x)$ at $x=a$ from this information.

