Review List

1) Show that the following are correct:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{3}{\sqrt{2 n+1}}=0 \\
& \lim _{n \rightarrow \infty} \frac{2 n+5}{3 n+2}=\frac{2}{3}
\end{aligned}
$$

2) Explain why $\sqrt{5}$ is not a rational number. Explain why $\sqrt{2}+\sqrt{5}$ is not a rational number (hint: let $q=\sqrt{2}+\sqrt{5}$ and consider $(q-\sqrt{2})^{2}=5$. Show that q rational implies $\sqrt{2}$ is rational).
3) If $\sum_{i=1}^{\infty} a_{i}$ converges and $\sum_{i=1}^{\infty} b_{i}$ diverges, does $\sum_{i=1}^{\infty}\left(2 a_{i}-b_{i}\right)$ converge or diverge?
4) Is the set

$$
\left\{\left.\frac{m}{n+m} \right\rvert\, n, m \in \mathbb{N}\right\}
$$

bounded above? closed? open? What are its limit points? Briefly explain why $[2,3)$ is neither open nor closed.
5) Is $a_{n}=1+\frac{(-1)^{n}}{\sqrt{n}}$ a Cauchy sequence? (hint: you don't need to use ϵ inequalities!)
6) Use the monotone convergence theorem to explain why

$$
x_{1}=1, \quad x_{n}=\left(4 x_{n-1}\right)^{\frac{1}{3}}
$$

is a convergent sequence. What is its limit?
7) If $\sum_{i=1}^{\infty} a_{i}$ converges, explain why $\sum_{i=1}^{\infty} a_{i}^{n}$ converges for any $n \in \mathbb{N}$ (this is similar to a homework problem, and done the same way).
8) Let a_{n} be a monotone increasing sequence. When is $\left\{a_{n}\right\}$ a closed subset of \mathbb{R} ?
9) Let $A \subset B \subset \mathbb{R}$. Show that $\bar{A} \subset \bar{B}$.
10) Call $S \subset \mathbb{R}$ complete if every $\left(s_{i}\right) \subset S$ that is a Cauchy sequence in \mathbb{R}, has its limit in S. What subsets of \mathbb{R} are complete?

