Review for Math 152H-1 Test \#1

Review Problem Answers and Solutions:

1. Calculate the following limits:
(1) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x(\sqrt{x+2}-2)}$
(2) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-3 x+2}{x^{2}-2 x+1}$
(3) $\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}+\frac{1}{x}}{3+\sqrt{x}}$
(4) $\lim _{x \rightarrow 2} \frac{\sin \left(\pi x^{2}-2 \pi x\right)}{x^{2}-4}$
(5) $\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{x^{\frac{3}{2}}}$
(6) $\lim _{h \rightarrow 0} \frac{(16+h)^{\frac{1}{4}}-2}{h}$

Answers: (1) $4,(2) \infty,(3) 2$, (4) $\frac{\pi}{2}$, (5) 0 , replace $\cos x$ using $\cos x=1-2 \sin ^{2}\left(\frac{x}{2}\right)$, (6) $\frac{1}{4}(16)^{-\frac{3}{4}}=\frac{1}{32}$, write down the limit definition of the derivative for $f(x)=x^{\frac{1}{4}}$ at $x=16$ (using the version with " h ") and compare to the above.
2. Compute the following derivatives in any manner you prefer:
(1) $\frac{d}{d x}\left(10 x^{-2}+\frac{2}{\sqrt{x}}-4\right)$
(2) $\frac{d^{2}}{d x^{2}} \tan 2 x$
(3) $\frac{d}{d x}(\sqrt{1+2 x}-1)^{5}$
(4) $\frac{d}{d x} \sqrt{\left(1+x^{2}\right)(\sin 2 x \cos x)}$
(1) $-20 x^{-3}-x^{-\frac{3}{2}}$,
(2) $8 \sec ^{2}(2 x) \tan (2 x)$,
(3) $5(\sqrt{1+2 x}-1)^{4} \frac{1}{\sqrt{1+2 x}}$,
(4) $\frac{1}{2 \sqrt{\left(1+x^{2}\right)(\sin 2 x \cos x)}}(2 x \sin 2 x \cos x+(1+$ $\left.\left.x^{2}\right)(2 \cos 2 x \cos x-\sin 2 x \sin x)\right)$
3. Use the definition of the derivative to compute the derivative of $y=\frac{1}{x^{2}+2 x}+3$ (for this it's best not to use the version with an h). Find the equation of the tangent line for this function at $x=1$.

We calculate

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{1}{x^{2}+2 x}+3-\frac{1}{a^{2}+2 a}-3}{x-a}=\lim _{x \rightarrow a} \frac{\frac{a^{2}-x^{2}+2 a-2 x}{\left(x^{2}+2 x\right)\left(a^{2}+2 a\right)}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(a-x)(a+x+2)}{\left(x^{2}+2 x\right)\left(a^{2}+2 a\right)(x-a)}=\lim _{x \rightarrow a}-\frac{(a+x+2)}{\left(x^{2}+2 x\right)\left(a^{2}+2 a\right)}=-\frac{2 a+2}{\left(a^{2}+2 a\right)^{2}}
\end{aligned}
$$

At $a=1$ we have $f^{\prime}(1)=-\frac{4}{3^{2}}=-\frac{4}{9}$. Furthermore $f(1)=\frac{10}{3}$ so the equation of the tangent line is $y=$ $f^{\prime}(a)(x-a)+f(a)$ or $y=-\frac{4}{9}(x-1)+\frac{10}{3}$.
4. Where is

$$
y=3+\frac{x^{2}+2 x-3}{(x+1)\left(x^{2}-1\right)}
$$

continuous? Can we extend this function to be continuous at any point where it is currently not continous. What does its graph look near $x=-3$? what happens near $x=+1$? near $x=1$? Does the function have any horizontal asymptotes? If so what are their equations?

The numerator factors as $(x+3)(x-1)$ and the denominator factors as $(x+1)^{2}(x-1)$. So our function is

$$
y=3+\frac{(x+3)(x-1)}{(x+1)^{2}(x-1)}=3+\frac{x+3}{(x+1)^{2}}
$$

when $x \neq 1$. So the domain of the function is $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$. It is also continuous there since polynomials are continuous and the quotient of continuous functions is continuous away from where the denominator is zero. That the $x-1$ terms cancel tell us that we can remove the singularity at 1 , to the function on the right, which is continuous on $(-\infty,-1) \cup(-1, \infty)$. To find how to redefince the function to be continuous at 1 we compute:

$$
\lim _{x \rightarrow 1} 3+\frac{x^{2}+2 x-3}{(x+1)\left(x^{2}-1\right)}=\lim _{x \rightarrow 1} 3+\frac{x+3}{(x+1)^{2}}=3+\frac{4}{2^{2}}=4
$$

Now the limit exists at 1 , we define y for $x=1$ to be 4 , so the limit and the function value are equal. Hence the function is continuous. At $x=-3$ we see that $y=3$. For $x=+1$, we have seen that there is a removable singularity, so the graph of the original function has a point missing. For $x=-1$ there is a vertical asymptote. Indeed, since $\lim _{x \rightarrow-1^{+}}=\lim _{x \rightarrow-1^{-}}=\infty$, both the graph on either side of -1 tends to positive infinity. Finally, we can find horizontal asymptotes by calculating $\lim _{x \rightarrow \pm \infty} y$. If we divide top and bottom of the fraction by x^{3} we'll see that these limits of the fraction are both 0 . Thus $\lim _{x \rightarrow \pm \infty} y=3$, so $y=3$ will be a horizontal asymptote as either $x \rightarrow \infty$ or $x \rightarrow-\infty$.
5. You are given that $\lim _{x \rightarrow 0^{+}} f(x)=3$ and $\lim _{x \rightarrow 0^{-}} f(x)=1$, what is

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{+}} f\left(x^{3}-x\right) & \lim _{x \rightarrow 0^{-}} f\left(x^{3}-x\right) \\
\lim _{x \rightarrow 0} f\left(x^{3}-x\right) & \lim _{x \rightarrow 0^{-}} f\left(x^{2}-x^{4}\right)
\end{array}
$$

As $x \rightarrow 0^{+} x^{3}-x=x(x-1)(x+1)$ tends to 0 from the left since $x(x-1)(x+1)$ is negative for $x \in(0,1)$. So the answer to the first is 1 . The answer to the secon dis 3 . The third does not exist. For the fourth $x^{2}-x^{4}=x^{2}(1-x)(1+x)$ which is positive both as $x \rightarrow 0^{+}$or as $x \rightarrow 0^{-}$, thus $\lim _{x \rightarrow 0} f\left(x^{2}-x^{4}\right)=3$ (so the limit from either side will as well).
6. If $\lim _{x \rightarrow 2} \frac{3 x+1}{\sqrt{g(x)}}=3$ what can you say about $\lim _{x \rightarrow 2} g(x)$? Suppose $\lim _{x \rightarrow 2} \frac{x^{2}-4}{g(x)-3}=5$, what can you say about $\lim _{x \rightarrow 2} g(x)$?

For the first $\lim _{x \rightarrow 2} g(x)=\left(\frac{7}{3}\right)^{2}$ when it exists. For the second $\lim _{x \rightarrow 2} g(x)=3$. In either case can the limit not exist?
7. Given $\epsilon>0$ find δ so that $|\sqrt{x+3}-2|<\epsilon$ when $0<|x-1|<\delta$. For each $\epsilon>0$ is there always a $\delta>0$ so that $|\sqrt{x+3}-3|<\epsilon$ when $0<x<\delta$?

We solve $-\epsilon<\sqrt{x+3}-2<\epsilon \Leftrightarrow-\epsilon+2<\sqrt{x+3}<\epsilon+2$. Squaring both sides, and noting that for $\epsilon<1$ $-\epsilon+2>0$, we have $\epsilon^{2}-4 \epsilon+4<x+3<\epsilon^{2}+4 \epsilon+4$. Subtracting 4 gives $\epsilon^{2}-4 \epsilon<x-1<\epsilon^{2}+4 \epsilon$. Now, since $\epsilon>0$ we have $4 \epsilon-\epsilon^{2}<\epsilon^{2}+4 \epsilon$, so when $\epsilon^{2}-4 \epsilon<x-1<-\epsilon^{2}+4 \epsilon$ the previous inequality is also true, and by working backwards we will get what we want. So we could choose $\delta=4 \epsilon-\epsilon^{2}$. Note that this last step is forced on us to find a single δ which works for $0<|x-1|<\delta$. The idea of a limit doesn't require the δ to be the same on the left and right, but that's the definition we're using so we have to conform to it.
8. Is $y=\sqrt{(x-1)^{2}}$ differentiable at 1? What happens to the graph at $x=1$? What is the equation of the tangent line to this function at $x=2$? Why is

$$
y=y= \begin{cases}x^{2} & x \leq 0 \\ x+3 & x>0\end{cases}
$$

not differentiable at 0 ? What does its graph look like? Why is $y=x^{\frac{1}{5}}$ not differentiable at 0 , what does its graph look like?

First, $y=\sqrt{(x-1)^{2}}=|x-1|$. It is not differentiable at 1 because when $x>1$ it has slope +1 and when $x<1$ it has slope -1 . There is a "corner" at 1 . Near 2 however, the function agrees with $y=x-1$. As a line is its own tangent, this is also the tangent line. The second function is not differentiable at 0 because it is not continuous there. The last function has derivative $\frac{1}{5} x^{-\frac{4}{5}}$. It thus has an infinite slope tangent line at 0 .
9. Suppose

$$
f(x)= \begin{cases}g(x) & x \leq 1 \\ x^{2}+a x+b & x \geq 1\end{cases}
$$

where $g(x)$ is differentiable on \mathbb{R} with $g(1)=3$ and $g^{\prime}(1)=5$. What are the values of a and b for which $f(x)$ is both continuous and differentiable for $x \in \mathbb{R}$? If $g^{\prime \prime}(x)$ exists everywhere, and $g^{\prime \prime}(1)=3$, is $f^{\prime \prime}(x)$ defined at 1 ?

For the function to be continuous we need $1+a+b=3$. This follows from $g(x)$ and $x^{2}+a x+b$ both being continuous on \mathbb{R}, so all we need to do is match the right and left hand limits, which will be $g(1)$ and $1+a+b$ (since the functions are continuous!). For the function to be differentiable, we must have a unique slope at 1 , thus $5=2+a$. Note that the first slope is given to you, while the second follows from the fact that $x^{2}+a x+b$ is continuously differentiable. Thus $a=3$ and $1+3+b=3$ implies $b=-1$. Howevere, not matter how we try we cannot make the second derivatives match up, so $f^{\prime \prime}(x)$ is not defined at 1 (only the x^{2} term contributes to the second derivative). If we had the freedom to consider $c x^{2}+a x+b$, then it can be done.
10. Show that

$$
y= \begin{cases}x^{3} \cos \left(\frac{1}{x^{2}}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

is differentiable at 0 . Is it continuously differentiable at 0 ? Same questions for

$$
y= \begin{cases}x^{3} \cos \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

For the first, we compute

$$
\lim _{h \rightarrow 0} \frac{h^{3} \cos \left(\frac{1}{h^{2}}\right)-0}{h}=\lim _{h \rightarrow 0} h^{2} \cos \left(\frac{1}{h^{2}}\right)=0
$$

where the last comes from the squeeze theorem. TO see if it is continuously differentiable, we use the rules for derivatives to computs $f^{\prime}(x)=3 x^{2} \cos \left(\frac{1}{x^{2}}\right)-2 \sin \left(\frac{1}{x^{2}}\right)$ when $x \neq 0$. For $x \neq 0$ all the terms in this expression are continuous, hence it is continuously differentiable away from 0 . At $0 \lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist because of the $\sin \left(\frac{1}{x^{2}}\right)$ term. Hence it is not continuously differentiable. For the second function, we proceed as before, and discover that again the derivative is 0 at $x=0$. However, when $x \neq 0$ we have $f^{\prime}(x)=3 x^{2} \cos \left(\frac{1}{x}\right)-x \sin \left(\frac{1}{x}\right)$. And now we can use the squeeze theorem to show that each of these terms has limit equal to 0 at $x=0$. Hence it is continuously differentiable. (For $x \sin \left(\frac{1}{x}\right)$ we use $-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|$ for the squeeze. We need the absolute values to ensure that for x negative, the inequalities are still true.)
11. A challenge problem: For each $\epsilon>0$ is it possible to find a $\delta>0$ so that $\left|\left((1+x)^{\pi}-4^{\pi}\right)-5(x-3)\right|<\epsilon|x-3|$ when $0<|x-3|<\delta$? (Hint: Can you relate this to derivatives?)

Re-write as

$$
\left|\frac{\left((1+x)^{\pi}-(1+3)^{\pi}\right)}{x-3}-5\right|<\epsilon
$$

when $0<|x-3|<\delta$. This is asking whether $\lim _{x \rightarrow 3} \frac{\left((1+x)^{\pi}-(1+3)^{\pi}\right)}{x-3}=5$. Now we recognize the limit as the calculation of the derivative of $f(x)=(1+x)^{\pi}$ at $x=3$. That derivative is $\pi(1+x)^{\pi-1}$ at 3 or $\pi \cdot 4^{\pi-1}$. This turns out to be bigger than 60 .

