Homework for Math 152H-1 September 11

Homework: Recall the limit we mentioned at the end of class:
if $f(x) \rightarrow 0$ as $x \rightarrow a$ then $\lim _{x \rightarrow a} \frac{\sin f(x)}{f(x)}=1$.
The denominator must be the same as what you are taking the sine of! Also recall the following identities:

$$
\tan x=\frac{\sin x}{\cos x} \quad \sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x} \quad \cot x=\frac{\cos x}{\sin x}
$$

The following example will be helpful:

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \cdot 2=1 \cdot 2
$$

Compute
(1) $\lim _{x \rightarrow 0} \frac{\sin \sqrt{3} x}{\sqrt{3} x}$
(2) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$
(3) $\lim _{x \rightarrow 0} \frac{\tan \sqrt{3} x}{x}$
(4) $\lim _{x \rightarrow 0} 2 x^{2} \cot x \csc x$
(5) $\lim _{x \rightarrow 0} \frac{2 x+\sin x^{2}}{x}$
(6) $\lim _{x \rightarrow 1} \frac{\sin \left(x^{2}-x-2\right)}{x-1}$
(7) $\lim _{x \rightarrow 0} \frac{\sin (2 \sin x)}{x}$
(8) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 4 x}$
(9) $\lim _{x \rightarrow 2} \frac{\sin (\sqrt{x+2}-2)}{x-2}$
(10) $\lim _{x \rightarrow \infty} \sqrt{x} \sin \left(x^{-\frac{1}{2}}\right)$
(11) $\lim _{x \rightarrow 1^{-}} \frac{\sin \left(\sqrt{(x-1)^{2}}\right)}{x-1}$
(12) Use the following identity $\cos (\theta)=1-2 \sin ^{2}\left(\frac{\theta}{2}\right)$ to compute:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

(13) Show that the following limit does not exist:

$$
\lim _{x \rightarrow 0^{+}} \sin \frac{1}{x}
$$

Hint: Find two sequences converging to zero, such that $\sin \frac{1}{x}$ converges to two different numbers. To do this note that as $x \rightarrow 0^{+}, \frac{1}{x} \rightarrow \infty$, but how does $\sin y$ behave as $y \rightarrow \infty$? This is an example of a function where even the right and left hand limits may not exist!
(14) On the other hand explain how you know that

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0
$$

Hint: Can you find functions so that $f(x) \leq x^{2} \sin \frac{1}{x} \leq g(x)$ such that $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow 0$?

