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We have said that lim
x→a

f(x) = L means that “near” a, f(x) should be arbitrarily well approximated by L (at least if we are

willing to get closer to a). Now consider the function:

f(x) =
{

0 if 0 ≤ x is irrational
1
q if 0 ≤ x = p

q is a reduced rational number

We are going to show that lim
x→a

f(x) = 0 for every a > 0. What we need to see is that for any sequence of rational numbers,
distinct from a, but converging to a, the denominators necesarily go to infinity. Why is this true? Well consider the rationals
in [0, 1] with denominators 1, 2, 3, 4 and 5, for example. There are only finitely many of them, and the reduced ones are
thus a minimal distance apart. Obviously, this is still true if the denominators are restricted to 1, 2, 3, . . . ,M , although the
minimal distance is much smaller. Nevertheless, to converge to any number without equalling it, we cannot use a finite set
of numbers. Thus, at some point in the sequence the denominators of the rational terms must get bigger than M . After that
point, the value of the function is 0 if the term in the sequence is irrational and < 1

M if the term is rational. But this implies
that lim

x→a
f(x) = 0 for all a.

This takes a little time to get one’s mind around. Nevertheless, this says that near any point f(x) is well-approximated
by 0, even near a rational point. How can this be? Remember we are not saying anything about what happens at the
rational, only in an interval (a − δ, a) ∪ (a, a + δ) near it. There it can be shown that the irrationals are “much denser”
than the rationals, and those rationals which do appear have very large denominators. Nevertheless, this isn’t quite what we
would like. What we would ideally like is to find limits by plugging into the function. Failing that, we will allow nice failures:
jumps, infinite asymptotes, and missing points. Nevertheless, we really, really would like to be able to plug into the function.

The property that makes this possible is called continuity. Intuitively it means that when we draw a graph, we don’t
lift our pencil. More specifically, we don’t lift our pencil on the domain of the function. Mathematically, this becomes:

Definition: A function f(x) is continuous at a if

1. a is in the domain of f(x) (we don’t allow this point to be missing or the graph to have an asymptote)

2. lim
x→a

f(x) exists (no jumps or sin 1
x misbehaviour)

3. lim
x→a

f(x) = f(a) (we can evaluate the limit by plugging a into the function)

A function is continuous if it is continuous at each point in its domain. For example, f(x) = 1
x is continuous because 0 is

not in its domain. It is not continuous at 0, though. We will require the domains of our functions to be unions of intervals
(otherwise we can get some odd things). When we want to broaden our class of functions, we’ll generally ask that they be
piecewise continous, i.e. continuous except at a finite number of jumps. Finally, if f(x) is defined on [a, b] we can talk about
right-hand continuity at a by requiring a to be in the domain of f and lim

x→a+
f(x) = f(a).

Furthermore, it is continuity that allows us to compute lim
x→1

√
x + 2 =

√
3. If g(x) is continuous at L (as

√
x will be

near 3) and lim
x→a

f(x) = L (no continuity required!) we have lim
x→a

g(f(x)) = g( lim
x→a

f(x)) = g(L). In other words, we can take

limits inside continuous functions (but not unless the function is continuous).

For evaluating limits this is all quite nice, but it raises two questions:

1. How can we tell when a function is continuous?

2. Why does the mathematical definition correspond to the intuitive notion of continuity?

The answer to the former question is to use the definition of the limit. Fortunately, there are faster ways for most functions
we will use. These are contained in the following facts. We assume that both f(x) and g(x) are continuous at a, then the
follwoing are also continuous at a



1. f(x)± g(x)

2. f(x)g(x)

3. f(x)
g(x) when g(a) 6= 0

4. C · f(x)

5. if h(x) is continuous at f(a) then h(f(x)) is continuous at a.

The first four follow from the properties of limits. The last one is new. Now we combine this with the fact that
∣∣ · ∣∣, xl, sin x,

cos x are all continuous to see that many more complicated functions are continuous.

For example, where is
√

(x−1)(x−2)
x−3 continuous? First, it can only be continuous on its domain: we need x 6= 3 and

(x−1)(x−2)
x−3 ≥ 0. The domain is [1, 2] ∪ (3,∞). However at each of these points each of x− 1, x− 2, and x− 3 is continuous

using the rules above. Thus the fraction (x−1)(x−2)
x−3 is continuous. And since

√
x = x

1
2 is continuous wherever it is defined so

will be the composition
√

(x−1)(x−2)
x−3 .

A partial answer to the second question is contained in the following two facts:

1. If f(x) is continuous on [a, b] then f(x) attains a maximum and a minimum on this set.

2. If f(x) is continuous on [a, b] and f(a) < C < f(b) then there is a point c where f(c) = C

See section 2.6 for continuity


