Homework for Math 152H-1 September 1

I mentioned in class the prinicple of mathematical induction. To read more about it, see Appendix A1 in the book. The idea is the following: Suppose we have an infinite number of things we wish to prove: $P_{1}, P_{2}, P_{3}, \ldots$ For example, suppose we wanted to prove that

$$
2^{n} \geq n^{2} \text { for } n \geq 4
$$

Our P_{i} is then the inequality for $n=i: 2^{i} \geq i^{2}$. Rather than verifying each inequality we do the following.

1. For $n=4$ the inequality is true $16=2^{4} \geq 4^{2}=16$.
2. If the inequality is true for n, then it is true for $n+1$: $(n+1)^{2}=n^{2}+2 n+1<n^{2}+3 n$ since $1<n$. Since $3<n$ we also have $n^{2}+3 n<n^{2}+n \cdot n<2 n^{2}$. Hence $(n+1)^{2}<2 n^{2}$. But $2\left(n^{2}\right)<2 \cdot 2^{n}=2^{n+1}$ because the inequality is true for n. Hence, $(n+1)^{2}<2^{n+1}$.

This proves it for all n. Once we know it's true for $n=4$, we have seen that it must be true for $n=5$. Then it must be true for $n=6$, etc. The second step guarantees that this never fails.

Here's another example: Prove that $n^{3}-n$ is always divisible by 3 for $n=1,2,3, \ldots$ For $n=1,1^{3}-1=0$, and 0 is divisible by every number. Now assume that the result is true for $n^{3}-n$ and consider $(n+1)^{3}-(n+1)=n^{3}+3 n^{2}+3 n+1-n-1=$ $n^{3}-n+3 n^{2}+3 n$. Since 3 divides $n^{3}-n$ and $3\left(n^{2}+n\right)$, it must divide $(n+1)^{3}-(n+1)$. We have shown that is is true for $n=1$, and that if it is true for n then it is true for $n+1$, so it must be true for all n.

Homework: Prove by mathematical induction:
1.

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

2.

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. Since $|a+b| \leq|a|+|b|$, show that

$$
\left|c_{1}+c_{2}+\ldots+c_{n}\right| \leq\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{n}\right|
$$

A comment: I wasn't actually going to give any homework on the increasing, bounded above sequence property. However, I have included here another example which you can try to do, with some hints as to how to do it.

Problem: Let A and B be positive, real numbers. Prove the AM-GM inequality:

$$
\frac{A+B}{2} \geq \sqrt{A B}
$$

Hint: $(\sqrt{A}-\sqrt{B})^{2} \geq 0$. When does it equal 0 ?
Challenge Problem: Consider the sequence from the last homework

$$
b_{n}=\frac{1}{2}\left(b_{n-1}+\frac{1}{b_{n-1}}\right) \quad b_{1}=2
$$

Show that this is decreasing sequence that is bounded below, justifying our assumption that it has a limit. Here are the steps:

1. Show that if $b_{n-1}>1$ then $b_{n}<b_{n-1}$.
2. Show that if $b_{n-1}>1$ then $b_{n}>1$. To do this use the AM-GM inequality from the previous problem.

Now what conclusion can you draw using induction and these two properties?
Another problem involving bounded, decreasing or increasing sequences: Suppose we have closed intervals in the number line, $I_{j}=\left[a_{j}, b_{j}\right]$ (the set of x with $a_{j} \leq x \leq b_{j}$), and we have one for each $j=1,2,3, \ldots$ Further assume that $I_{j} \subset I_{j-1}$ (i.e. $a_{j-1} \leq a_{j}$ and $b_{j} \leq b_{j-1}$), and that $b_{j}-a_{j} \rightarrow 0$ as $j \rightarrow \infty$. Explain why there is precisely one and only one real number that is in all the intervals

