Homework for Math 152H-1 September 20

Reading: Read section 3.1 pgs 152-154, sec 3.3

Homework:

Some useful identities:

$$
\begin{aligned}
& x^{2}-a^{2}=(x-a)(x+a) \\
& x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\cdots+a^{n-2} x+a^{n-1}\right) \\
& \sin (a+h)=\sin (a) \cos (h)+\cos (a) \sin (h) \\
& \cos (a+h)=\cos (a) \cos (h)-\sin (a) \sin (h) \\
& \cos (x)=1-2 \sin ^{2}\left(\frac{x}{2}\right)
\end{aligned}
$$

(1) Use the definition of the derivative and the identities above to calculate the derivative functions for

$$
\begin{array}{ccc}
y=3 x+1 & y=3 & y=x^{2}+x \\
y=\sqrt{x} & y=\frac{1}{x^{2}} & y=x^{n}
\end{array}
$$

The derivative function tells you the slope of the tangent line at each point. Find the equation of the tangent line to each of the above functions at $x=1$.
(2) Use the definition to calculate the derivative of $y=\sin x$. You should use the formula:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

and one of the above identities. At some point you will also need the last identity for $\cos x$. Once you have done this verify that the derivative of $\cos x$ is $-\sin x$ (it's the same procedure, but with different identites).
(3) Show that $y=|x|$ is not differentiable at 0 (show that the necessary limit does not exist by looking at right hand and left hand limits!).
(4) Show that the following function is not differentiable at 0 :

$$
h(x)=\left\{\begin{array}{cc}
1 & x=0 \\
-x^{2} & x \neq 0
\end{array}\right.
$$

Can you do this without using the definition?
(5) Is the following function differentiable at 0 :

$$
y=\left\{\begin{array}{cc}
x^{2} \sin \frac{1}{x} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

How about

$$
y=\left\{\begin{array}{cc}
x \sin \frac{1}{x} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

(6) For what value of c is

$$
y=\left\{\begin{array}{cl}
\sin x & x \leq 0 \\
c\left(x^{2}+x\right) & x \geq 0
\end{array}\right.
$$

differentiable at 0 ? (Hint: can you use your previous results?)

