Homework for Math 152H-1 September 20

Reading: A function $f(x)$ is called continuously differentiable if $f^{\prime}(x)$ is continuous. The function $y=x^{2} \sin \frac{1}{x}$ is an example of a differentiable function, which is not continuously differentiable. The relationship between continuity and differentiability is thus, $f^{\prime}(x)$ exists implies $f(x)$ is continuous, but $f^{\prime}(x)$ can be either continuous or not continuous. If $f^{\prime \prime}(x)$ (the derivative of the derivative) exists, then both $f^{\prime}(x)$ and $f(x)$ are continuous, but $f^{\prime \prime}(x)$ may or may not be.

We didn't get to this problem in class. So here's the solution:
(6) For what value of c is

$$
y=\left\{\begin{array}{cc}
\sin x & x \leq 0 \\
c\left(x^{2}+x\right) & x \geq 0
\end{array}\right.
$$

differentiable at 0 ? (Hint: can you use your previous results?)
First note that since $\sin 0=0$ and $c\left(0^{2}+0\right)=0$, the function is continuous. Away from 0 we can take the derivatives to get:

$$
y^{\prime}=\left\{\begin{array}{cc}
\cos x & x<0 \\
c(2 x+1) & x>0
\end{array}\right.
$$

In fact, both $\sin x$ and $c\left(x^{2}+x\right)$ are defined on the whole real line. So both prescribe a slope for the tangent line at 0 and this can be found from the derivatives above. (This differs from $x^{2} \sin \frac{1}{x}$, but as these functions don't have any problems at 0 , we can work out what happens at 0 from what happens nearby). To have a derivative, the slopes must exist and be equal, so set $\cos 0=c(2 \cdot 0+1)$ or $1=c$. If you choose a different value of c, you will have a continuous function with two different slopes at 0 , i.e. its graph will have a kink.

Homework: The homework today involves computations of derivatives. The relevant sections in the book are 3.2, 3.4, and the beginning of 3.5 (this sounds like a lot, but mainly the sections consist of example after example). If you have trouble you should check there. Note:

$$
\frac{d^{2}}{d x^{2}} f(x)=\frac{d}{d x}\left(\frac{d}{d x} f(x)\right)
$$

(1) $\frac{d}{d x}\left(3 x^{2}+2 \sqrt{x}-3\right)$
(3) $\frac{d}{d x}\left(2 x^{\pi}-\frac{2}{x+x^{2}}\right)$
(5) $\frac{d}{d x}\left(\tan x+\frac{x^{2}+1}{2 x+1}\right)$
(7) $\frac{d}{d x}\left(\left(x+\frac{1}{x}\right) \cdot \sec x\right)$
(9) $\frac{d}{d x} \cos (\sqrt{x})$
(11) $\frac{d}{d x}\left(x^{2} \sin x+2 x \cos x-2 \sin x\right)$
(13) $\frac{d}{d x} \sqrt{\frac{\sin x}{2+\cos ^{2} x}}$
(2) $\frac{d^{2}}{d x^{2}}\left(\frac{12}{x^{3}}-\sin x\right)$
(4) $\frac{d}{d x}((1+\sqrt{x})(\cos x+\sin x))$
(6) $\frac{d^{2}}{d x^{2}} 3(\sin 2 x)(\csc 2 x)$
(8) $\frac{d}{d x}(\sqrt{1+3 x}-\sin 2 x)$
(10) $\frac{d}{d x}(x+\cos x)^{101}$
(12) $\frac{d}{d x} \frac{\tan 3 x}{1+\tan 2 x}$
(14) $\frac{d^{101}}{d x^{101}} \cos x$
(15) $\frac{d}{d x} \sin (\sqrt{1+\cos x})$
(16) $\frac{d}{d x}\left(1+\sin ^{2}\left(\frac{1}{2 x+1}\right)\right)^{12}$
(17) If we take the derivative of $y=3 x+2$ we get $y^{\prime}=3$. If we take the derivative of this we get $y^{\prime \prime}=0$. In fact, If $\frac{d^{n}}{d x^{n}} P(x)=0$, then $P(x)$ is a polynomial (as we will see later). Let $P(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots a_{1} x+a_{0}$ with $a_{m} \neq 0$. How many derivatives must we take before we get 0 ?
(18) Prove the product formula:

$$
\frac{d}{d x}(f(x) \cdot g(x))=\frac{d}{d x}(f(x)) \cdot g(x)+f(x) \cdot \frac{d}{d x}(g(x))
$$

by completing the following computation:

$$
\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h}=?
$$

