Solutions to homework for September 1

Homework: Prove by mathematical induction:
1.

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Solution: For $n=1$ the sum on the left is 1 and the fraction on the right is $\frac{1(2)}{2}=1$. So the formula is true for $n=1$. Now assume that the formula is true for n. Then we have

$$
1+2+3+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=(n+1)\left(\frac{n}{2}+1\right)=\frac{(n+1)(n+2)}{2}
$$

If the formula is true for n then it is true for $n+1$. Since it is true for $n=1$, the formula is true for all n.
2.

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution: This is very similar to the previous case. For $n=1$ the sum on the left is 1 and the fraction on the right is $\frac{1(2)(3)}{6}=1$. So the formula is true for $n=1$. Now assume that the formula is true for n. Then we have

$$
\begin{aligned}
1^{2}+2^{2}+3^{2} & +\ldots+n^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)\left(2 n^{2}+n+6 n+6\right)}{6}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}=\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

Since $2 n+3=2(n+1)+1$, this is just the formula for $n+1$. If the formula is true for n then it is true for $n+1$. Since it is true for $n=1$, the formula is true for all n.
3. Since $|a+b| \leq|a|+|b|$, show that

$$
\left|c_{1}+c_{2}+\ldots+c_{n}\right| \leq\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{n}\right|
$$

Solution: I have told you that the case for $n=2$ is true. Now we use that to prove the more general case. Assume that for any numbers:

$$
\left|c_{1}+c_{2}+\ldots+c_{n}\right| \leq\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{n}\right|
$$

Now consider

$$
\left|c_{1}+c_{2}+\ldots+c_{n}+c_{n+1}\right|=\left|\left(c_{1}+c_{2}+\ldots+c_{n}\right)+c_{n+1}\right|
$$

We think of $c_{1}+\ldots+c_{n}$ as a and c_{n+1} as b, and then use $|a+b| \leq|a|+|b|$. This gives

$$
\left|c_{1}+c_{2}+\ldots+c_{n}+c_{n+1}\right| \leq\left|c_{1}+c_{2}+\ldots+c_{n}\right|+\left|c_{n+1}\right|
$$

By assumption, we know that $\left|c_{1}+c_{2}+\ldots+c_{n}\right| \leq\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{n}\right|$, so we have

$$
\left|c_{1}+c_{2}+\ldots+c_{n}+c_{n+1}\right| \leq\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{n}\right|+\left|c_{n+1}\right|
$$

We know that the inequality is true for all numbers when $n=2$. If the inequality is true for n, we have seen that it must be true for $n+1$. Therefore, no matter how many terms, c_{i}, there are, we may use the inequality above.

Problem: Let A and B be positive, real numbers. Prove the AM-GM inequality:

$$
\frac{A+B}{2} \geq \sqrt{A B}
$$

Solution: Since $x^{2} \geq 0$ for any numbere x, we must have $(\sqrt{A}-\sqrt{B})^{2} \geq 0$. It is equal to 0 only when $A=B$. Now expanding the square gives $A-2 \sqrt{A B}+B \geq 0$ or, upon re-writing, $\frac{A+B}{2} \geq \sqrt{A B}$. There is equality only if $A=B$.

Challenge Problem: Consider the sequence from the last homework

$$
b_{n}=\frac{1}{2}\left(b_{n-1}+\frac{1}{b_{n-1}}\right) \quad b_{1}=2
$$

Show that this is decreasing sequence that is bounded below, justifying our assumption that it has a limit. Here are the steps:

1. Show that if $b_{n-1}>1$ then $b_{n}<b_{n-1}$.

Solution: We replace b_{n} with the formula above and ask is $\frac{1}{2}\left(b_{n-1}+\frac{1}{b_{n-1}}\right)<b_{n-1}$. To find when this happens we solve the inequality: $\left(b_{n-1}+\frac{1}{b_{n-1}}<2 b_{n-1} \Leftrightarrow \frac{1}{b_{n-1}}<b_{n-1}\right.$ or $b_{n-1}^{2}>1$. The solutions to this last inequality are when b_{n-1} is in the set $(-\infty,-1) \cup(1, \infty)$. So when $b_{n-1}>1$ the inequality is true and we have $b_{n}<b_{n-1}$.
2. Show that if $b_{n-1}>1$ then $b_{n}>1$. To do this use the AM-GM inequality from the previous problem.

Solution: Since $b_{n-1}>0$, we have $\frac{1}{b_{n-1}}>0$. If we apply the AM-GM inequality from the previous exercise we obtain

$$
b_{n}=\frac{1}{2}\left(b_{n-1}+\frac{1}{b_{n-1}}\right) \geq \sqrt{b_{n-1} \cdot \frac{1}{b_{n-1}}}=1
$$

There is equality only when $b_{n-1}=1$, but we have assumed that this is not the case.
Now we use induction. Since $b_{1}=2>1$, we have $b_{1}>b_{2}>1$ by the properties above. Assume that $b_{n-1}>b_{n}>1$. Then by the properties above we have $b_{n}>b_{n+1}>1$. Hence this must be true for all n. But then $b_{1}>b_{2}>b_{3}>\cdots>b_{n} \cdots>1$ and the sequence $\left\{b_{n}\right\}$ is decreasing and bounded below. Such a sequence has a limit.

Another problem involving bounded, decreasing or increasing sequences: Suppose we have closed intervals in the number line, $I_{j}=\left[a_{j}, b_{j}\right]$ (the set of x with $a_{j} \leq x \leq b_{j}$), and we have one for each $j=1,2,3, \ldots$. Further assume that $I_{j} \subset I_{j-1}$ (i.e. $a_{j-1} \leq a_{j}$ and $b_{j} \leq b_{j-1}$), and that $b_{j}-a_{j} \rightarrow 0$ as $j \rightarrow \infty$. Explain why there is precisely one and only one real number that is in all the intervals.

Solution: The sequence $\left\{a_{j}\right\}$ is increasing and bounded above by any of the b_{j}. Likewise $\left\{b_{j}\right\}$ is decreasing and bounded below. Thus both sequences have limits, L_{a} and L_{b}. However, as $j \rightarrow \infty$, the terms in the sequence must get close to the limits, and by assumption must get close to each other. This cannot happen if $L_{a} \neq L_{b}$ as they would be separated by some distance on the number line. Thus $L_{a}=L_{b}$ and we call this number L. But $a_{j} \leq L \leq b_{j}$ for each j and thus L is in all the intervals. Since the length of the intervals goes to zero only L can be in all the intervals. Thus there is one and only one number in all the intervals. The situation described in the problem is called haveing a nested sequence of closed intervals.

