
Solutions to homework for September 1

Homework: Prove by mathematical induction:

1.

1 + 2 + 3 + . . . + n =
n(n + 1)

2

Solution: For n = 1 the sum on the left is 1 and the fraction on the right is 1(2)
2 = 1. So the formula is true for n = 1.

Now assume that the formula is true for n. Then we have

1 + 2 + 3 + . . . + n + (n + 1) =
n(n + 1)

2
+ (n + 1) = (n + 1)

(n

2
+ 1

)
=

(n + 1)(n + 2)
2

If the formula is true for n then it is true for n + 1. Since it is true for n = 1, the formula is true for all n.

2.

12 + 22 + . . . + n2 =
n(n + 1)(2n + 1)

6

Solution: This is very similar to the previous case. For n = 1 the sum on the left is 1 and the fraction on the right is
1(2)(3)

6 = 1. So the formula is true for n = 1. Now assume that the formula is true for n. Then we have

12 + 22 + 32 + . . . + n2 + (n + 1)2 = n(n+1)(2n+1)
6 + (n + 1)2 = n(n+1)(2n+1)+6(n+1)2

6

= (n+1)(2n2+n+6n+6)
6 = (n+1)(2n2+7n+6)

6 = (n+1)(n+2)(2n+3)
6

Since 2n +3 = 2(n +1) +1, this is just the formula for n +1. If the formula is true for n then it is true for n +1. Since
it is true for n = 1, the formula is true for all n.

3. Since
∣∣ a + b

∣∣ ≤ ∣∣ a
∣∣ +

∣∣ b
∣∣, show that∣∣c1 + c2 + . . . + cn

∣∣ ≤ ∣∣c1

∣∣ +
∣∣c2

∣∣ + . . . +
∣∣cn

∣∣
Solution: I have told you that the case for n = 2 is true. Now we use that to prove the more general case. Assume
that for any numbers: ∣∣c1 + c2 + . . . + cn

∣∣ ≤ ∣∣c1

∣∣ +
∣∣c2

∣∣ + . . . +
∣∣cn

∣∣
Now consider ∣∣c1 + c2 + . . . + cn + cn+1

∣∣ =
∣∣(c1 + c2 + . . . + cn) + cn+1

∣∣
We think of c1 + . . . + cn as a and cn+1 as b, and then use

∣∣ a + b
∣∣ ≤ ∣∣ a

∣∣ +
∣∣ b

∣∣. This gives∣∣c1 + c2 + . . . + cn + cn+1

∣∣ ≤ ∣∣c1 + c2 + . . . + cn

∣∣ +
∣∣cn+1

∣∣
By assumption, we know that

∣∣c1 + c2 + . . . + cn

∣∣ ≤ ∣∣c1

∣∣ +
∣∣c2

∣∣ + . . . +
∣∣cn

∣∣, so we have∣∣c1 + c2 + . . . + cn + cn+1

∣∣ ≤ ∣∣c1

∣∣ +
∣∣c2

∣∣ + . . . +
∣∣cn

∣∣ +
∣∣cn+1

∣∣
We know that the inequality is true for all numbers when n = 2. If the inequality is true for n, we have seen that it
must be true for n + 1. Therefore, no matter how many terms, ci, there are, we may use the inequality above.

Problem: Let A and B be positive, real numbers. Prove the AM-GM inequality:

A + B

2
≥
√

AB



Solution: Since x2 ≥ 0 for any numbere x, we must have (
√

A −
√

B)2 ≥ 0. It is equal to 0 only when A = B. Now
expanding the square gives A− 2

√
AB + B ≥ 0 or, upon re-writing, A+B

2 ≥
√

AB. There is equality only if A = B.

Challenge Problem: Consider the sequence from the last homework

bn =
1
2
(
bn−1 +

1
bn−1

)
b1 = 2

Show that this is decreasing sequence that is bounded below, justifying our assumption that it has a limit. Here are the
steps:

1. Show that if bn−1 > 1 then bn < bn−1.
Solution: We replace bn with the formula above and ask is 1

2

(
bn−1 + 1

bn−1

)
< bn−1. To find when this happens we

solve the inequality:
(
bn−1 + 1

bn−1
< 2bn−1 ⇔ 1

bn−1
< bn−1 or b2

n−1 > 1. The solutions to this last inequality are when
bn−1 is in the set (−∞,−1) ∪ (1,∞). So when bn−1 > 1 the inequality is true and we have bn < bn−1.

2. Show that if bn−1 > 1 then bn > 1. To do this use the AM-GM inequality from the previous problem.
Solution: Since bn−1 > 0, we have 1

bn−1
> 0. If we apply the AM-GM inequality from the previous exercise we obtain

bn =
1
2
(
bn−1 +

1
bn−1

)
≥

√
bn−1 ·

1
bn−1

= 1

There is equality only when bn−1 = 1, but we have assumed that this is not the case.

Now we use induction. Since b1 = 2 > 1, we have b1 > b2 > 1 by the properties above. Assume that bn−1 > bn > 1. Then
by the properties above we have bn > bn+1 > 1. Hence this must be true for all n. But then b1 > b2 > b3 > · · · > bn · · · > 1
and the sequence {bn} is decreasing and bounded below. Such a sequence has a limit.

Another problem involving bounded, decreasing or increasing sequences: Suppose we have closed intervals in
the number line, Ij = [aj , bj ] ( the set of x with aj ≤ x ≤ bj), and we have one for each j = 1, 2, 3, . . .. Further assume that
Ij ⊂ Ij−1 (i.e. aj−1 ≤ aj and bj ≤ bj−1), and that bj − aj → 0 as j → ∞. Explain why there is precisely one and only one
real number that is in all the intervals.

Solution: The sequence {aj} is increasing and bounded above by any of the bj . Likewise {bj} is decreasing and bounded
below. Thus both sequences have limits, La and Lb. However, as j → ∞, the terms in the sequence must get close to the
limits, and by assumption must get close to each other. This cannot happen if La 6= Lb as they would be separated by some
distance on the number line. Thus La = Lb and we call this number L. But aj ≤ L ≤ bj for each j and thus L is in all the
intervals. Since the length of the intervals goes to zero only L can be in all the intervals. Thus there is one and only one
number in all the intervals. The situation described in the problem is called haveing a nested sequence of closed intervals.


