Solutions to homework for September 1

Homework: Prove by mathematical induction:

1.

$$1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

Solution: For n = 1 the sum on the left is 1 and the fraction on the right is $\frac{1(2)}{2} = 1$. So the formula is true for n = 1. Now assume that the formula is true for n. Then we have

$$1 + 2 + 3 + \ldots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = (n+1)\left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2}$$

If the formula is true for n then it is true for n + 1. Since it is true for n = 1, the formula is true for all n.

2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Solution: This is very similar to the previous case. For n = 1 the sum on the left is 1 and the fraction on the right is $\frac{1(2)(3)}{6} = 1$. So the formula is true for n = 1. Now assume that the formula is true for n. Then we have

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} = \frac{n(n+1)(2n+1)+6(n+1)^{2}}{6} = \frac{(n+1)(2n^{2}+n+6n+6)}{6} = \frac{(n+1)(2n^{2}+7n+6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

Since 2n + 3 = 2(n + 1) + 1, this is just the formula for n + 1. If the formula is true for n then it is true for n + 1. Since it is true for n = 1, the formula is true for all n.

3. Since $|a+b| \leq |a| + |b|$, show that

$$|c_1 + c_2 + \ldots + c_n| \le |c_1| + |c_2| + \ldots + |c_n|$$

Solution: I have told you that the case for n = 2 is true. Now we use that to prove the more general case. Assume that for any numbers:

$$|c_1 + c_2 + \ldots + c_n| \le |c_1| + |c_2| + \ldots + |c_n|$$

Now consider

$$|c_1 + c_2 + \ldots + c_n + c_{n+1}| = |(c_1 + c_2 + \ldots + c_n) + c_{n+1}|$$

We think of $c_1 + \ldots + c_n$ as a and c_{n+1} as b, and then use $|a+b| \le |a| + |b|$. This gives

$$|c_1 + c_2 + \ldots + c_n + c_{n+1}| \le |c_1 + c_2 + \ldots + c_n| + |c_{n+1}|$$

By assumption, we know that $|c_1 + c_2 + \ldots + c_n| \leq |c_1| + |c_2| + \ldots + |c_n|$, so we have

$$|c_1 + c_2 + \ldots + c_n + c_{n+1}| \le |c_1| + |c_2| + \ldots + |c_n| + |c_{n+1}|$$

We know that the inequality is true for all numbers when n = 2. If the inequality is true for n, we have seen that it must be true for n + 1. Therefore, no matter how many terms, c_i , there are, we may use the inequality above.

Problem: Let A and B be positive, real numbers. Prove the AM-GM inequality:

$$\frac{A+B}{2} \ge \sqrt{AB}$$

Solution: Since $x^2 \ge 0$ for any numbers x, we must have $(\sqrt{A} - \sqrt{B})^2 \ge 0$. It is equal to 0 only when A = B. Now expanding the square gives $A - 2\sqrt{AB} + B \ge 0$ or, upon re-writing, $\frac{A+B}{2} \ge \sqrt{AB}$. There is equality only if A = B.

Challenge Problem: Consider the sequence from the last homework

$$b_n = \frac{1}{2} \left(b_{n-1} + \frac{1}{b_{n-1}} \right) \qquad b_1 = 2$$

Show that this is decreasing sequence that is bounded below, justifying our assumption that it has a limit. Here are the steps:

- 1. Show that if $b_{n-1} > 1$ then $b_n < b_{n-1}$. **Solution:** We replace b_n with the formula above and ask is $\frac{1}{2}(b_{n-1} + \frac{1}{b_{n-1}}) < b_{n-1}$. To find when this happens we solve the inequality: $(b_{n-1} + \frac{1}{b_{n-1}} < 2b_{n-1} \Leftrightarrow \frac{1}{b_{n-1}} < b_{n-1}$ or $b_{n-1}^2 > 1$. The solutions to this last inequality are when b_{n-1} is in the set $(-\infty, -1) \cup (1, \infty)$. So when $b_{n-1} > 1$ the inequality is true and we have $b_n < b_{n-1}$.
- 2. Show that if $b_{n-1} > 1$ then $b_n > 1$. To do this use the AM-GM inequality from the previous problem. Solution: Since $b_{n-1} > 0$, we have $\frac{1}{b_{n-1}} > 0$. If we apply the AM-GM inequality from the previous exercise we obtain

$$b_n = \frac{1}{2} \left(b_{n-1} + \frac{1}{b_{n-1}} \right) \ge \sqrt{b_{n-1} \cdot \frac{1}{b_{n-1}}} = 1$$

There is equality only when $b_{n-1} = 1$, but we have assumed that this is not the case.

Now we use induction. Since $b_1 = 2 > 1$, we have $b_1 > b_2 > 1$ by the properties above. Assume that $b_{n-1} > b_n > 1$. Then by the properties above we have $b_n > b_{n+1} > 1$. Hence this must be true for all n. But then $b_1 > b_2 > b_3 > \cdots > b_n \cdots > 1$ and the sequence $\{b_n\}$ is decreasing and bounded below. Such a sequence has a limit.

Another problem involving bounded, decreasing or increasing sequences: Suppose we have closed intervals in the number line, $I_j = [a_j, b_j]$ (the set of x with $a_j \le x \le b_j$), and we have one for each j = 1, 2, 3, ... Further assume that $I_j \subset I_{j-1}$ (i.e. $a_{j-1} \le a_j$ and $b_j \le b_{j-1}$), and that $b_j - a_j \to 0$ as $j \to \infty$. Explain why there is precisely one and only one real number that is in *all* the intervals.

Solution: The sequence $\{a_j\}$ is increasing and bounded above by any of the b_j . Likewise $\{b_j\}$ is decreasing and bounded below. Thus both sequences have limits, L_a and L_b . However, as $j \to \infty$, the terms in the sequence must get close to the limits, and by assumption must get close to each other. This cannot happen if $L_a \neq L_b$ as they would be separated by some distance on the number line. Thus $L_a = L_b$ and we call this number L. But $a_j \leq L \leq b_j$ for each j and thus L is in all the intervals. Since the length of the intervals goes to zero only L can be in all the intervals. Thus there is one and only one number in all the intervals. The situation described in the problem is called haveing a nested sequence of closed intervals.