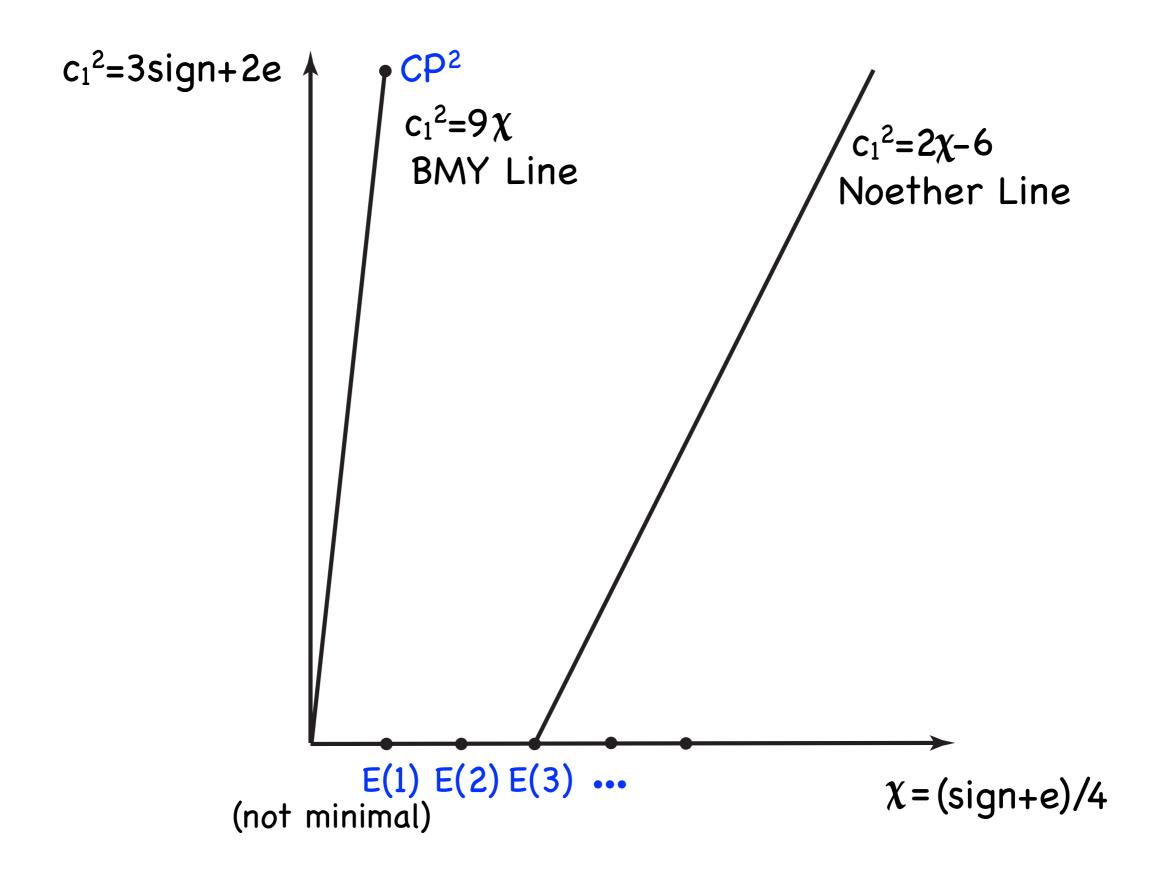
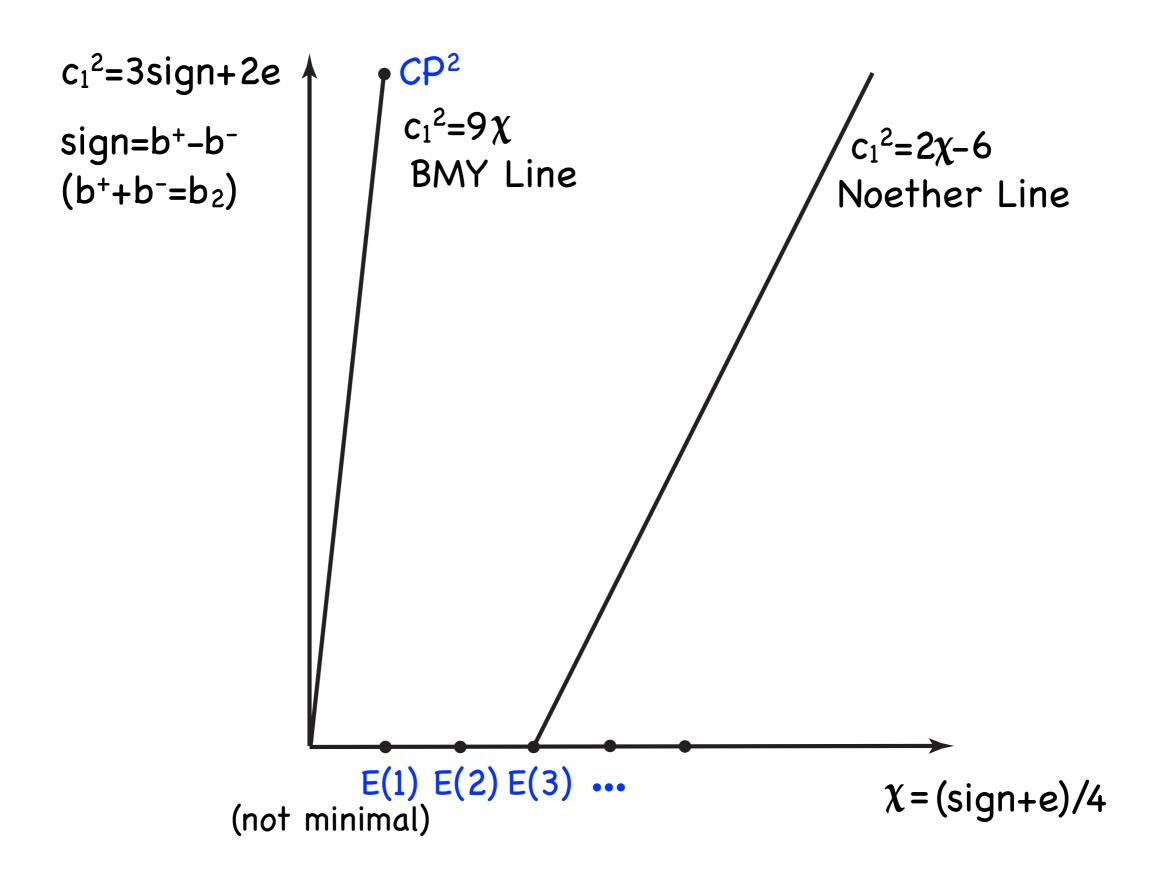


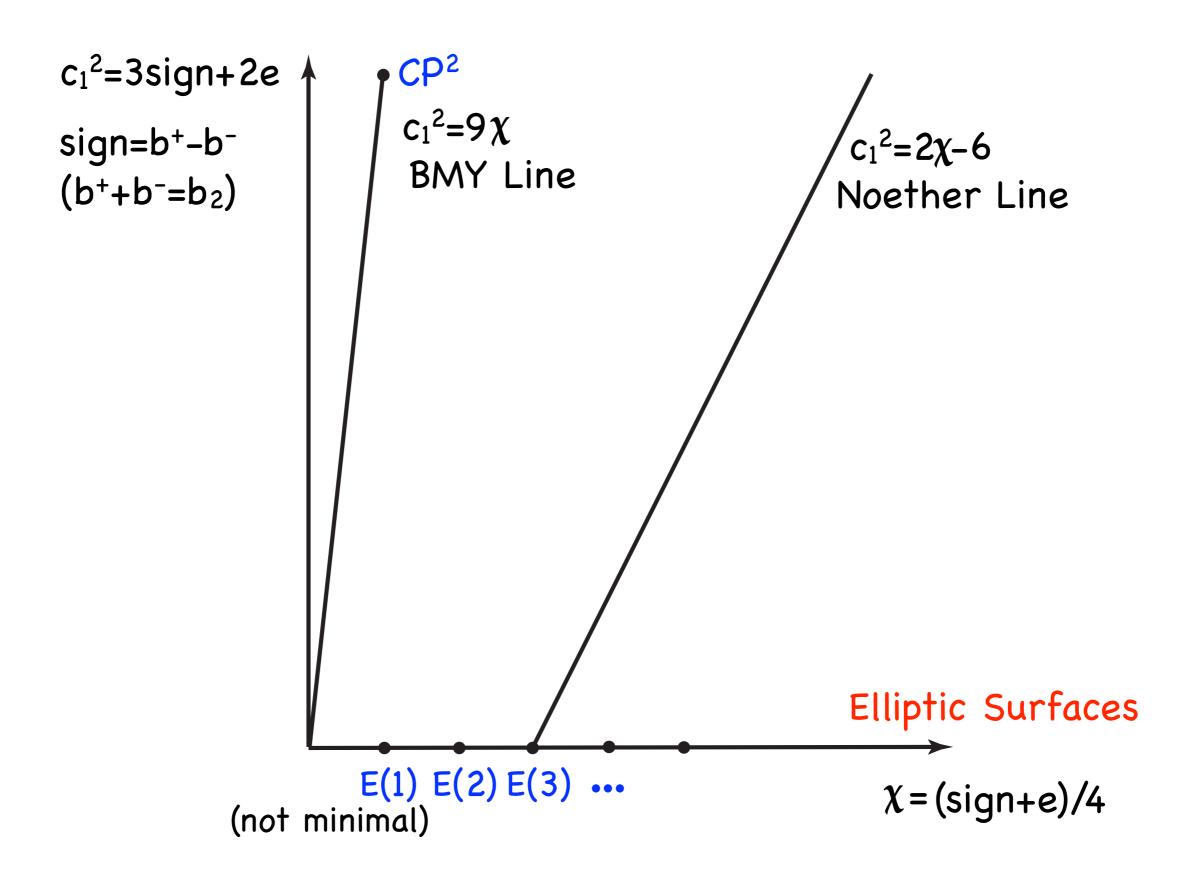
Smooth 4-Manifolds: 2011

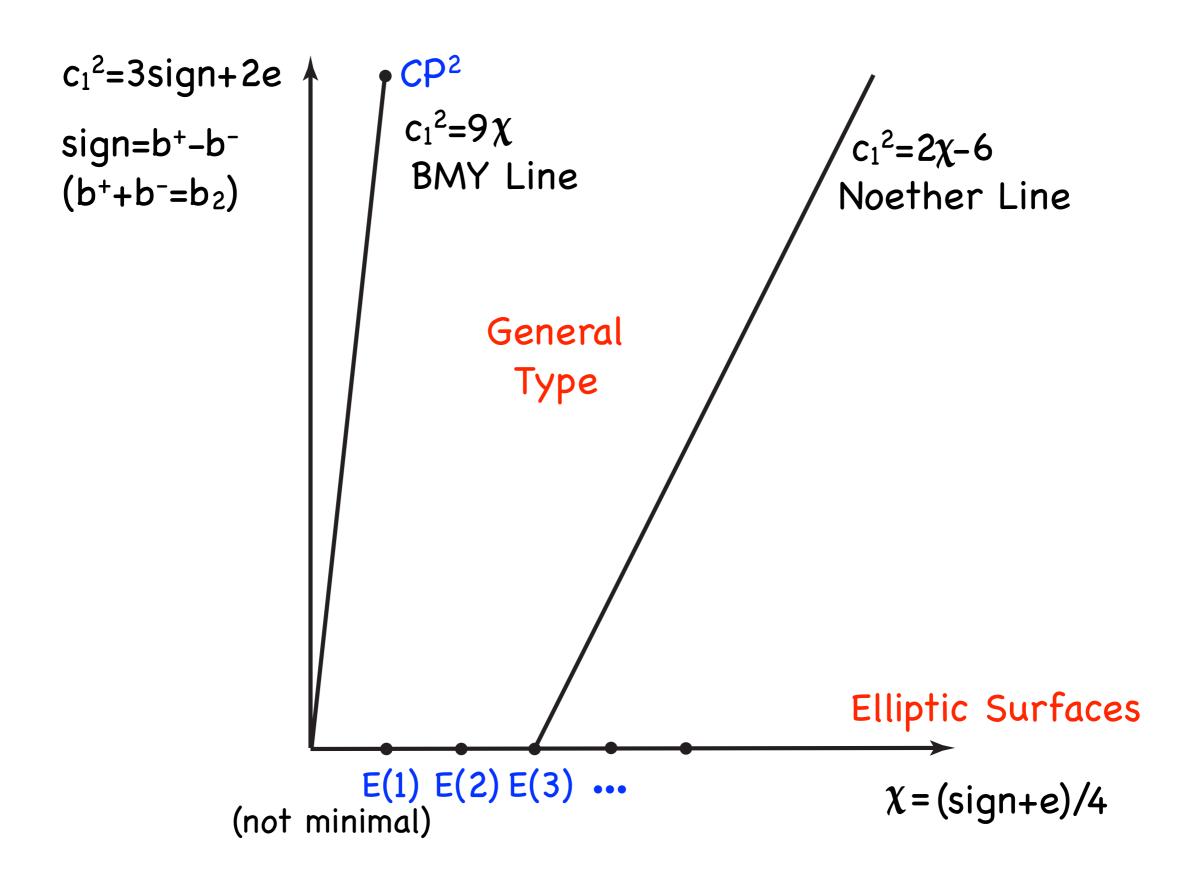
Ron Fintushel

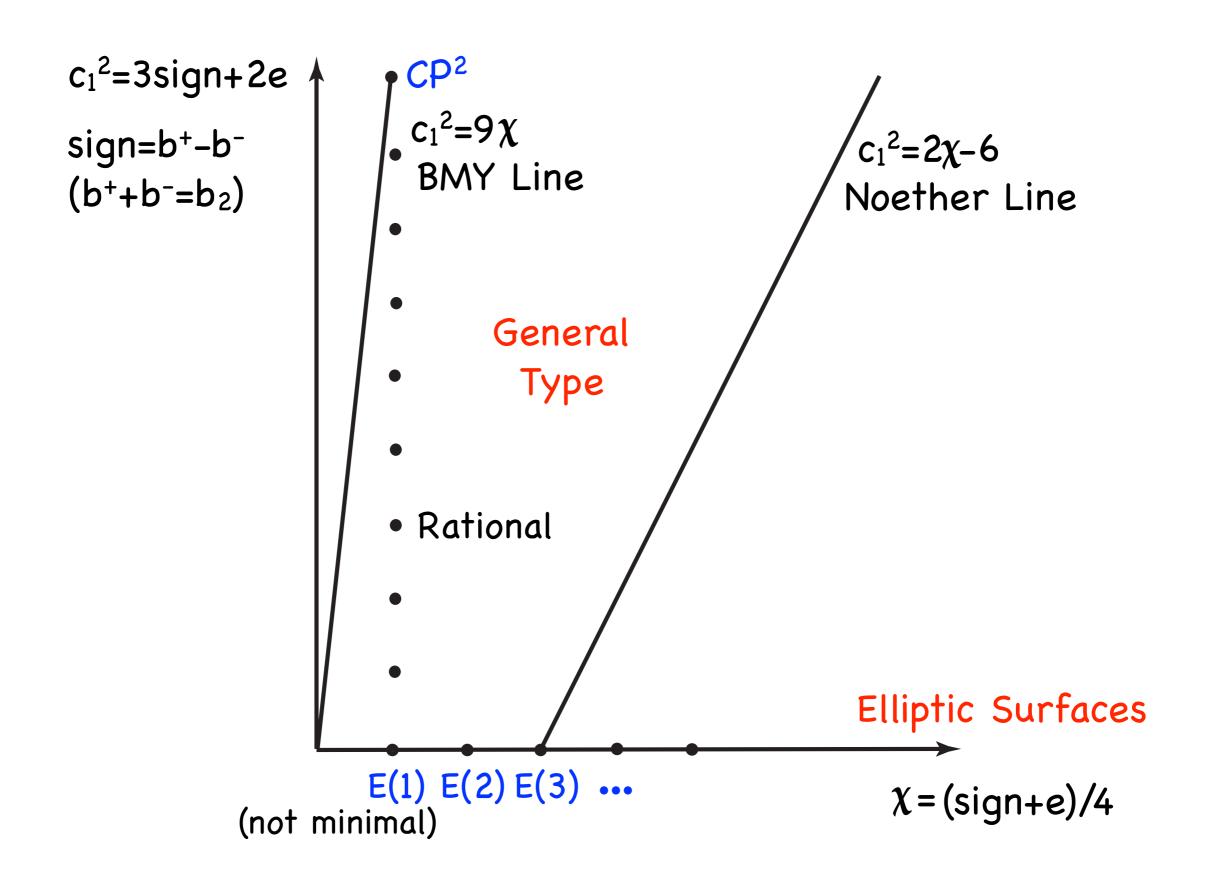
Michigan State University

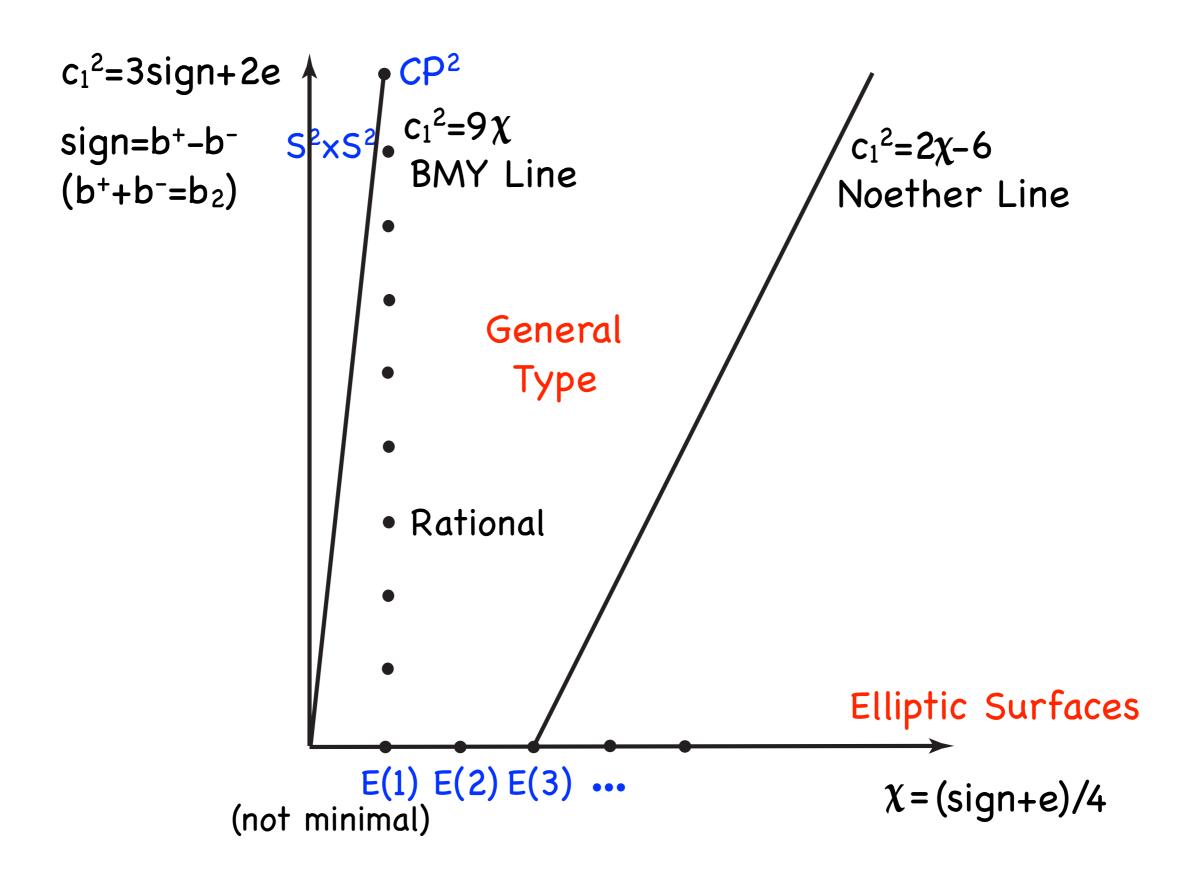


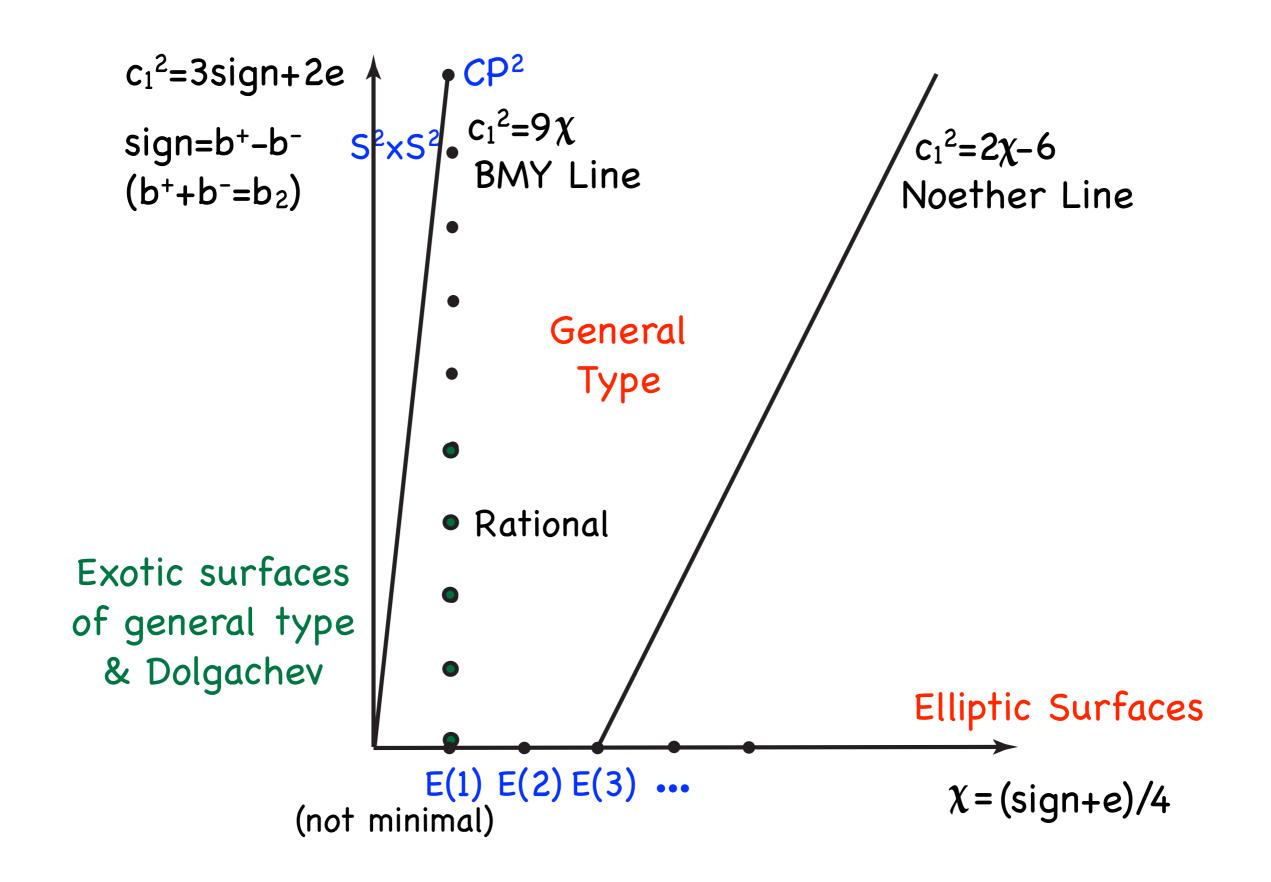












Smooth simply connected 4-manifolds with b⁺=1 classified up to homeomorphism by Freedman's Th'm:

Smooth simply connected 4-manifolds with b⁺=1 classified up to homeomorphism by Freedman's Th'm:

Odd intersection form: $CP^2 # n \overline{CP}^2$

Smooth simply connected 4-manifolds with b⁺=1 classified up to homeomorphism by Freedman's Th'm:

Odd intersection form: $CP^2#n\overline{CP}^2$ Even intersection form: $S^2 \times S^2$

Smooth simply connected 4-manifolds with b⁺=1 classified up to homeomorphism by Freedman's Th'm:

Odd intersection form: $CP^2#n\overline{CP}^2$ Even intersection form: $S^2 \times S^2$

⇒ Homeo type of s.c. smooth 4-mfd w/ b+=1 determined by Type (even, odd) rank of H₂

Elliptic Surfaces

Elliptic Surfaces

$$E(1)=CP^2\#9\overline{CP}^2$$
 $T^2 \rightarrow E(1)$ Elliptic fibration
 \downarrow^{π}
 CP^1

Elliptic SurfacesE(1)=CP²#9CP² $T^2 \rightarrow E(1)$ Elliptic fibration \downarrow^{π} CP^1 Fiber sums:E(n)=E(1)#F...#FE(1)b+=2n-1

Elliptic Surfaces $E(1)=CP^2\#9\overline{CP}^2$ $T^2 \rightarrow E(1)$ Elliptic fibration \downarrow^{π} CP^1 Fiber sums: $E(n)=E(1)\#_F...\#_FE(1)$ $b^+=2n-1$ Log transform:Remove nbd $T^2 \times D^2 = N_F$ of generic fiber and reglue

Elliptic Surfaces $E(1)=CP^2\#9\overline{CP}^2$ $T^2 \rightarrow E(1)$ Elliptic fibration ΙΠ CP^{1} Fiber sums: $E(n)=E(1)\#_{F}...\#_{F}E(1)$ $b^{+}=2n-1$ Log transform: Remove nbd $T^2 \times D^2 = N_F$ of generic fiber and reglue Multiplicity = degree of $\partial D^2 \rightarrow \partial N_F$ e.g. $S^{1}x(p/q)$ -Dehn LΠ surgery has mult = p $\pi(\partial N_F) = S^1$

Elliptic Surfaces $E(1)=CP^2\#9\overline{CP}^2$ $T^2 \rightarrow E(1)$ Elliptic fibration LΠ CP^{1} Fiber sums: $E(n)=E(1)\#_{F}...\#_{F}E(1)$ $b^{+}=2n-1$ Log transform: Remove nbd $T^2 \times D^2 = N_F$ of generic fiber and reglue Multiplicity = degree of $\partial D^2 \rightarrow \partial N_F$ e.g. $S^{1}x(p/q)$ -Dehn LΠ surgery has mult = p $\pi(\partial N_F) = S^1$

> For elliptic surfaces with cusp fibers the result of a log transform depends only on the multiplicity. True (up to diffeo) if simply connected.

b⁻=9 Dolgachev surfaces $E(1)_{p,q}$ = result of mult. p and q log transforms (p,q rel prime and ≥ 2)

 $E(1)_{p,q}$ s.c., odd & $b_2=10 \Rightarrow$ homeo to E(1)

b⁻=9 Dolgachev surfaces $E(1)_{p,q}$ = result of mult. p and q log transforms (p,q rel prime and ≥2)

 $E(1)_{p,q}$ s.c., odd & $b_2=10 \Rightarrow$ homeo to E(1)

<u>Thm</u>. (Donaldson, 1985) $E(1)_{2,3}$ not diffeo to E(1).

b⁻=9 Dolgachev surfaces $E(1)_{p,q}$ = result of mult. p and q log transforms (p,q rel prime and ≥ 2)

 $E(1)_{p,q}$ s.c., odd & $b_2=10 \Rightarrow$ homeo to E(1)

<u>Thm.</u> (Donaldson, 1985) $E(1)_{2,3}$ not diffeo to E(1). Friedman, Morgan: $E(1)_{p,q} \cong E(1)_{p',q'} \Leftrightarrow \{p,q\}=\{p',q'\}$

b⁻=9 Dolgachev surfaces E(1)_{p,q} = result of mult. p and q log transforms (p,q rel prime and ≥2)

 $E(1)_{p,q}$ s.c., odd & $b_2=10 \Rightarrow$ homeo to E(1)

<u>Thm.</u> (Donaldson, 1985) $E(1)_{2,3}$ not diffeo to E(1). Friedman, Morgan: $E(1)_{p,q} \cong E(1)_{p',q'} \Leftrightarrow \{p,q\}=\{p',q'\}$

b⁻=8 Barlow surface

homeo to CP²#8CP² not diffeo Kotschick, 1989

X : s.c. smooth 4-mfd, $b^+ \ge 1$, $SW_X \in \mathbb{Z}H_2(X)$ diffeo inv't

X : s.c. smooth 4-mfd, $b^+ \ge 1$, $SW_X \in \mathbb{Z}H_2(X)$ diffeo inv't

Only characteristic homology classes can have ≠0 coefficients

X : s.c. smooth 4-mfd, $b^+ \ge 1$, $SW_X \in \mathbb{Z}H_2(X)$ diffeo inv't

Only characteristic homology classes can have $\neq 0$ coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

X : s.c. smooth 4-mfd, b⁺>1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have \neq 0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

• If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²}=0 and SW_{S²xS²}=0

X : s.c. smooth 4-mfd, b⁺≥1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have ≠0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

• If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²} =0 and SW_{S²xS²} =0

• <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |

X : s.c. smooth 4-mfd, b⁺≥1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have ≠0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

• If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²} =0 and SW_{S²xS²} =0

- <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |
- For Kahler surfaces (Witten) and symplectic mfds (Taubes) $b^+>1 \Rightarrow SW_X \neq 0$ (canonical class has coeff ±1)

X : s.c. smooth 4-mfd, b⁺≥1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have ≠0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

• If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²} =0 and SW_{S²xS²} =0

- <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |
- For Kahler surfaces (Witten) and symplectic mfds (Taubes) $b^+>1 \Rightarrow SW_X \neq 0$ (canonical class has coeff ±1)

For b⁺=1, minor complications arising from reducible solutions to SW eq'ns for some metrics. Get inv'ts SW[±] and these determine SW.

X : s.c. smooth 4-mfd, b⁺≥1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have ≠0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

• If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²} =0 and SW_{S²xS²} =0

- <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |
- For Kahler surfaces (Witten) and symplectic mfds (Taubes) $b^+>1 \Rightarrow SW_X \neq 0$ (canonical class has coeff ±1)

X : s.c. smooth 4-mfd, b⁺≥1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have ≠0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

•If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²} =0 and SW_{S²xS²} =0

- <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |
- For Kahler surfaces (Witten) and symplectic mfds (Taubes) $b^+>1 \Rightarrow SW_X \neq 0$ (canonical class has coeff ±1)

Log transform formula: $SW_{X_p} = SW_X \cdot (t^{p-1} + t^{p-3} + ... + t^{3-p} + t^{1-p})$ where t= multiple fiber; so t^p =fiber

Works for SW^{\pm} when b⁺=1. Can use to compute SW.

E.g.
$$SW_{E(1)_{2,3}} = t^{-1} - t$$

Knot Surgery

T: homologically $\neq 0$, square 0 torus $\subset X$

K: knot in S^3 X_K= (X-(TxD²)) \cup (S¹x(S³-N_K))

glued so that (long. of K) $\leftrightarrow \partial D^2$

T: homologically $\neq 0$, square 0 torus $\subset X$

K: knot in S³ $X_{K}=(X-(TxD^{2}))\cup(S^{1}x(S^{3}-N_{K}))$

glued so that (long. of K) $\leftrightarrow \partial D^2$

 $\bullet X_{K:}$ same int. form as X

T: homologically $\neq 0$, square 0 torus $\subset X$ K: knot in S³ $X_{K}=(X-(TxD^{2}))\cup(S^{1}x(S^{3}-N_{K}))$ glued so that (long. of K) $\leftrightarrow \partial D^{2}$

- $\bullet X_{K:}$ same int. form as X
- • $\pi_1(X)=1$ and $\pi_1(X-T)=1 \Rightarrow \pi_1(X_K)=1$

T: homologically $\neq 0$, square 0 torus $\subset X$ K: knot in S³ $X_{K}=(X-(TxD^{2}))\cup(S^{1}x(S^{3}-N_{K}))$ glued so that (long. of K) $\leftrightarrow \partial D^{2}$

• $X_{K:}$ same int. form as X

• $\pi_1(X)=1$ and $\pi_1(X-T)=1 \Rightarrow \pi_1(X_K)=1 \Rightarrow X_K$ homeo to X

T: homologically $\neq 0$, square 0 torus $\subset X$ K: knot in S³ $X_{K}=(X-(TxD^{2}))\cup(S^{1}x(S^{3}-N_{K}))$ glued so that (long. of K) $\leftrightarrow \partial D^{2}$

• X_{K:} same int. form as X • $\pi_1(X)=1$ and $\pi_1(X-T)=1 \Rightarrow \pi_1(X_K)=1 \Rightarrow X_K$ homeo to X <u>Knot Surgery Th'm</u> (F-Stern). SW_{X_K}=SW_X• $\Delta_K(t^2)$ (b⁺>1)

T: homologically $\neq 0$, square 0 torus $\subset X$ K: knot in S³ $X_{K}=(X-(TxD^{2}))\cup(S^{1}x(S^{3}-N_{K}))$ glued so that (long. of K) $\leftrightarrow \partial D^{2}$

• X_{K:} same int. form as X • $\pi_1(X)=1$ and $\pi_1(X-T)=1 \Rightarrow \pi_1(X_K)=1 \Rightarrow X_K$ homeo to X <u>Knot Surgery Th'm</u> (F-Stern). SW_{XK}=SW_X• $\Delta_K(t^2)$ (b⁺>1) • Works for SW[±] when b⁺=1

T: homologically $\neq 0$, square 0 torus $\subset X$ K: knot in S^3 $X_{K} = (X - (T_X D^2)) \cup (S^1 \times (S^3 - N_K))$ qlued so that (long. of K) $\leftrightarrow \partial D^2$ • X_{K} ; same int. form as X • $\pi_1(X)=1$ and $\pi_1(X-T)=1 \Rightarrow \pi_1(X_K)=1 \Rightarrow X_K$ homeo to X <u>Knot Surgery Th'm</u> (F-Stern). $SW_{X_{\kappa}}=SW_{X}\cdot\Delta_{K}(t^{2})$ (b⁺>1)

•Works for SW[±] when b⁺=1

Consequence: K=n-twist knot, $SW_{E(1)_{K}}=n(t^{-1}-t)$ \Rightarrow no two diffeo, all homeo to E(1)

Usual blowdown: $S^2 \subset X$, square -1, $N_{S^2} = \overline{CP}^2$ -ball $\partial N_{S^2} = S^3$ Trade N_{S^2} for B^4 , get \overline{X} $b_{\overline{X}}^- = b_{\overline{X}}^- - 1$ $SW_X = SW_{\overline{X}} \cdot (\epsilon + \epsilon^{-1})$

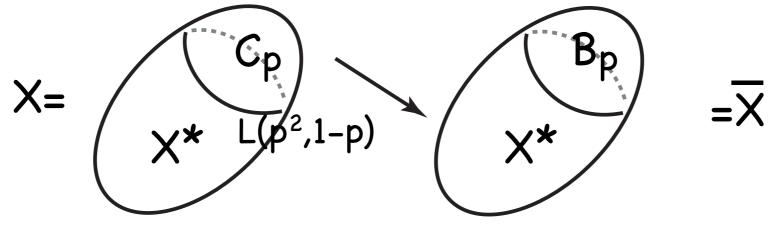
Usual blowdown: $S^2 \subset X$, square -1, $N_{S^2} = \overline{CP}^2$ -ball $\partial N_{S^2} = S^3$ Trade N_{S^2} for B^4 , get \overline{X} $b_{\overline{X}}^- = b_{\overline{X}}^- - 1$ $SW_X = SW_{\overline{X}} \cdot (\epsilon + \epsilon^{-1})$

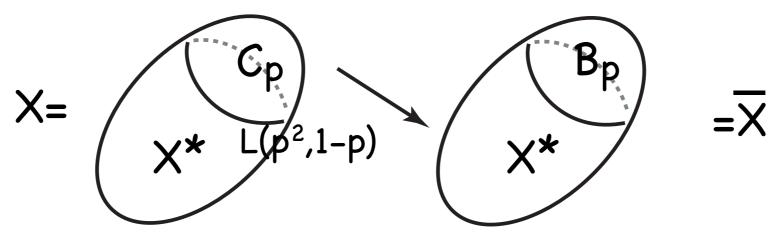
 S^2 : -4 sphere $\subset X$, $N_{S^2} = \overline{CP}^2 - N_{RP^2}$

Blowdown -4 sphere: replace N_{S^2} with $N_{RP^2_{C}CP^2}$ N_{RP^2} has $\pi_1=Z_2$ and is a Q-homology ball

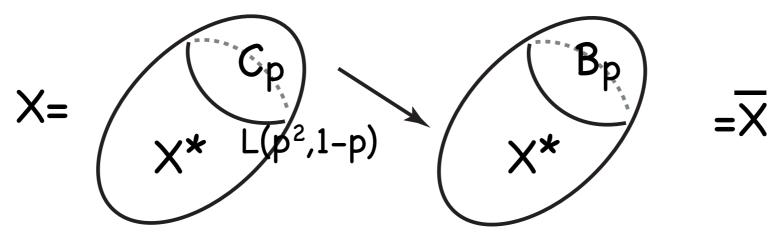
Usual blowdown: $S^2 \subset X$, square -1, $N_{S^2} = \overline{CP}^2$ -ball $\partial N_{S^2} = S^3$ Trade N_{S²} for B⁴, get X $b_{\overline{X}} = b_{\overline{X}} - 1$ $SW_{X}=SW_{\overline{X}}\cdot(\epsilon+\epsilon^{-1})$ S^2 : -4 sphere $\subset X$, $N_{S^2} = \overline{CP}^2 - N_{RP^2}$ Blowdown -4 sphere: replace N_S² with N_RP²_CCP² N_{RP^2} has $\pi_1=Z_2$ and is a Q-homology ball -2In general, p-1 has $\partial C_p = L(p^2, 1-p) = \partial B_p$ B_p is a Q-ball w/ $\pi_1 = Z_p$

Usual blowdown: $S^2 \subset X$, square -1, $N_{S^2} = \overline{CP}^2$ -ball $\partial N_{S^2} = S^3$ Trade N_{S²} for B⁴, get X $b_{\overline{X}} = b_{\overline{X}} - 1$ SWx=SW \overline{x} ·($\epsilon + \epsilon^{-1}$) S^2 : -4 sphere $\subset X$, $N_{S^2} = \overline{CP}^2 - N_{RP^2}$ Blowdown -4 sphere: replace N_{S2} with N_{RP²_CCP²} N_{RP^2} has $\pi_1=Z_2$ and is a Q-homology ball p-1 has $\partial C_p = L(p^2, 1-p) = \partial B_p$ B_p is a Q-ball w/ $\pi_1 = Z_p$ Rational blowdown – remove C_p, glue in B_p. Get X Lowers b^- by p-1.

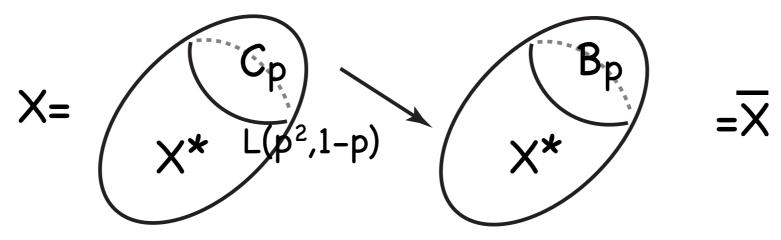




If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X*

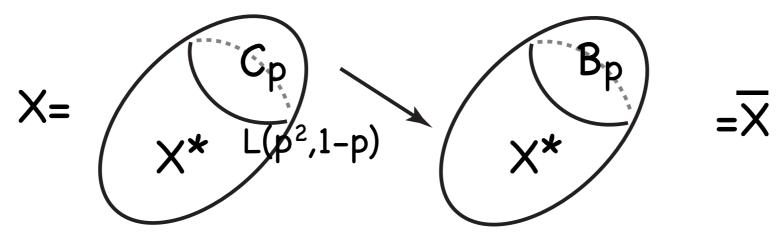


If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm</u>. (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SW_X

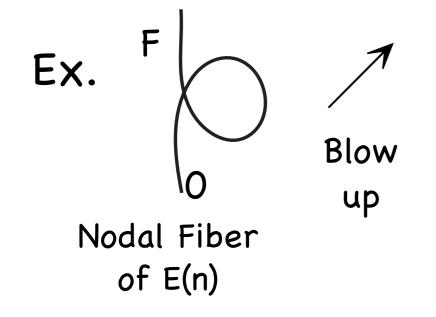


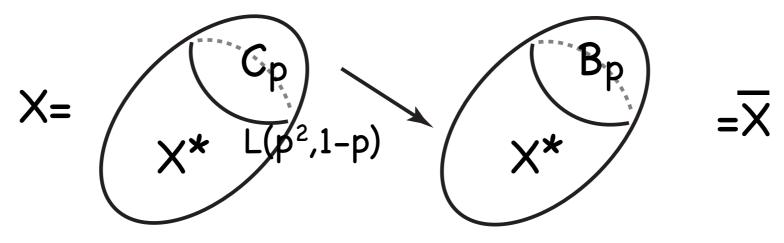
If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm</u>. (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SW_X Ex. $F \bigvee_{k=1}^{k}$

Nodal Fiber of E(n)



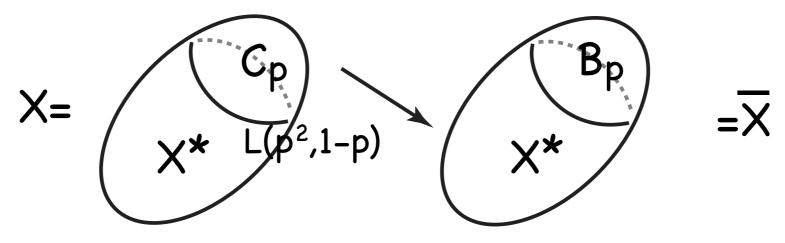
If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm</u>. (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SWX





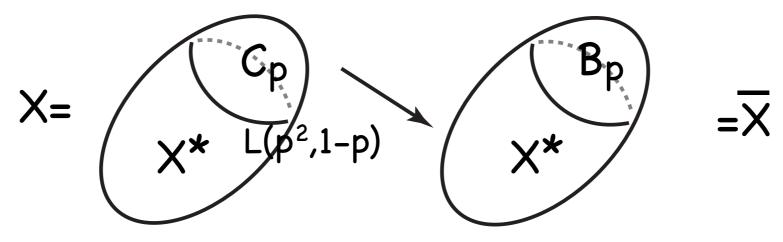
If \overline{k} =char homology class in \overline{X} , \exists lift k in $X \ni PD's$ agree on X^* <u>Thm.</u> (F-Stern) Coeff of \overline{k} in $SW_{\overline{X}}$ = Coeff of k in SW_X Ex. $F \bigvee_{\substack{ P \\ 0 \\ 0 \\ up \\ Vodal Fiber \\ E(n) \# \overline{CP}^2 \\ end{tabular}$

of E(n)

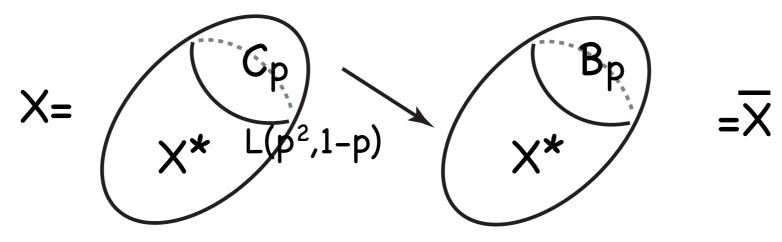


If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm.</u> (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SWX F-2E1 Ex. E_1 Blow up Nodal Fiber of E(n) rationally blow down C₂

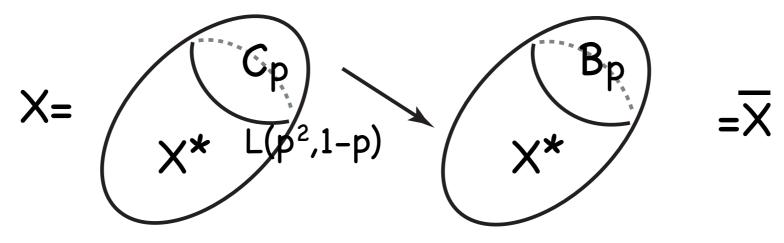
log transform of mult=2 E(n)₂



If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm.</u> (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SWX F-2E1 Ex. Blow Blow up Nodal Fiber of E(n) rationally blow down C₂ log transform $E(n)_2$ of mult=2

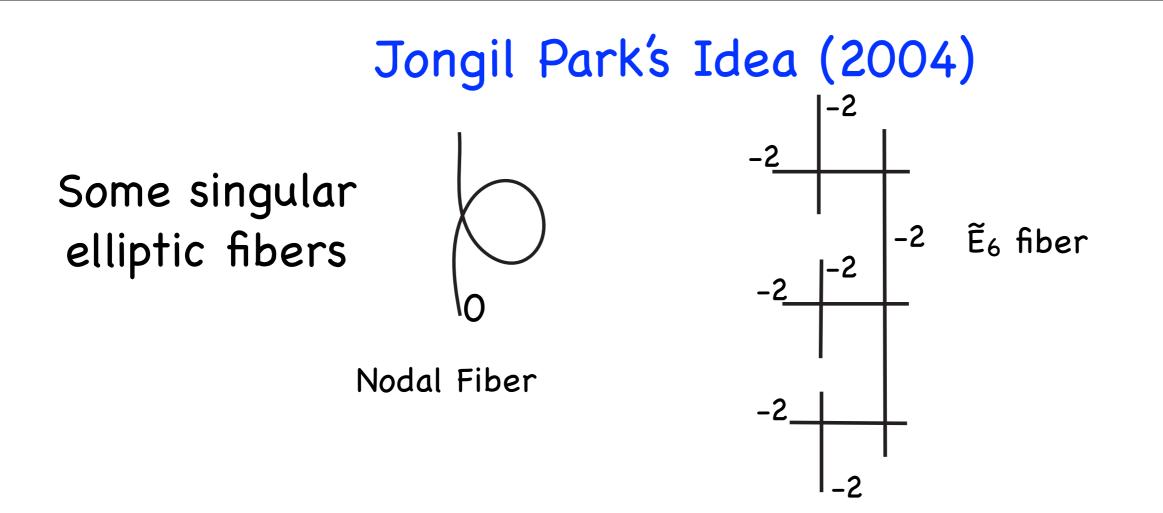


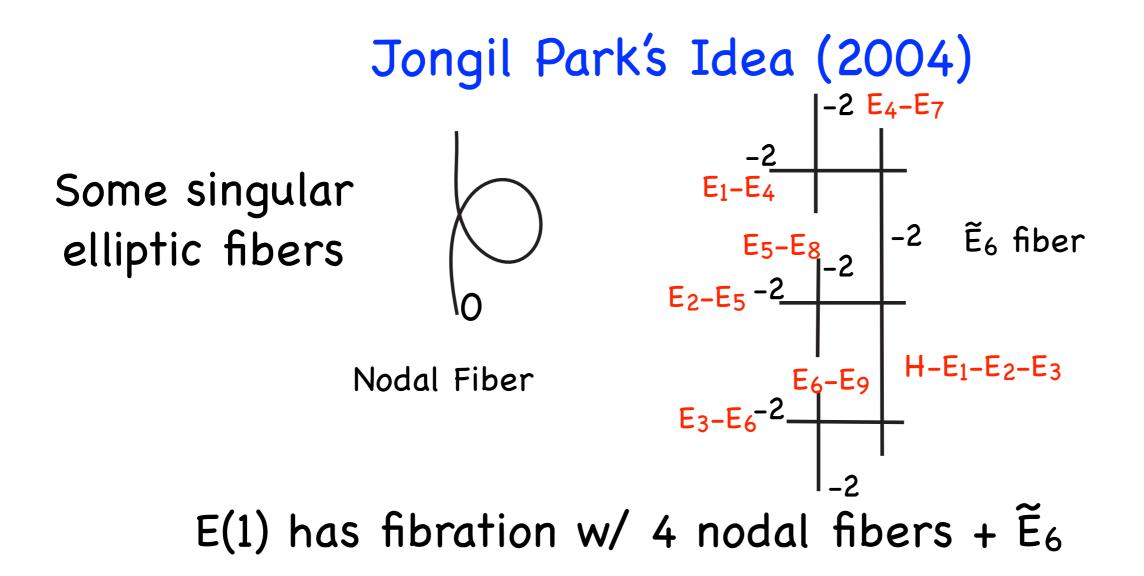
If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm.</u> (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SWX F-2E1 -5 Blow F-2E₁-E₂ Ex. **E**₁ Blow up E(n)#CP Nodal Fiber of E(n) rationally blow down C₂ log transform $E(n)_2$ of mult=2

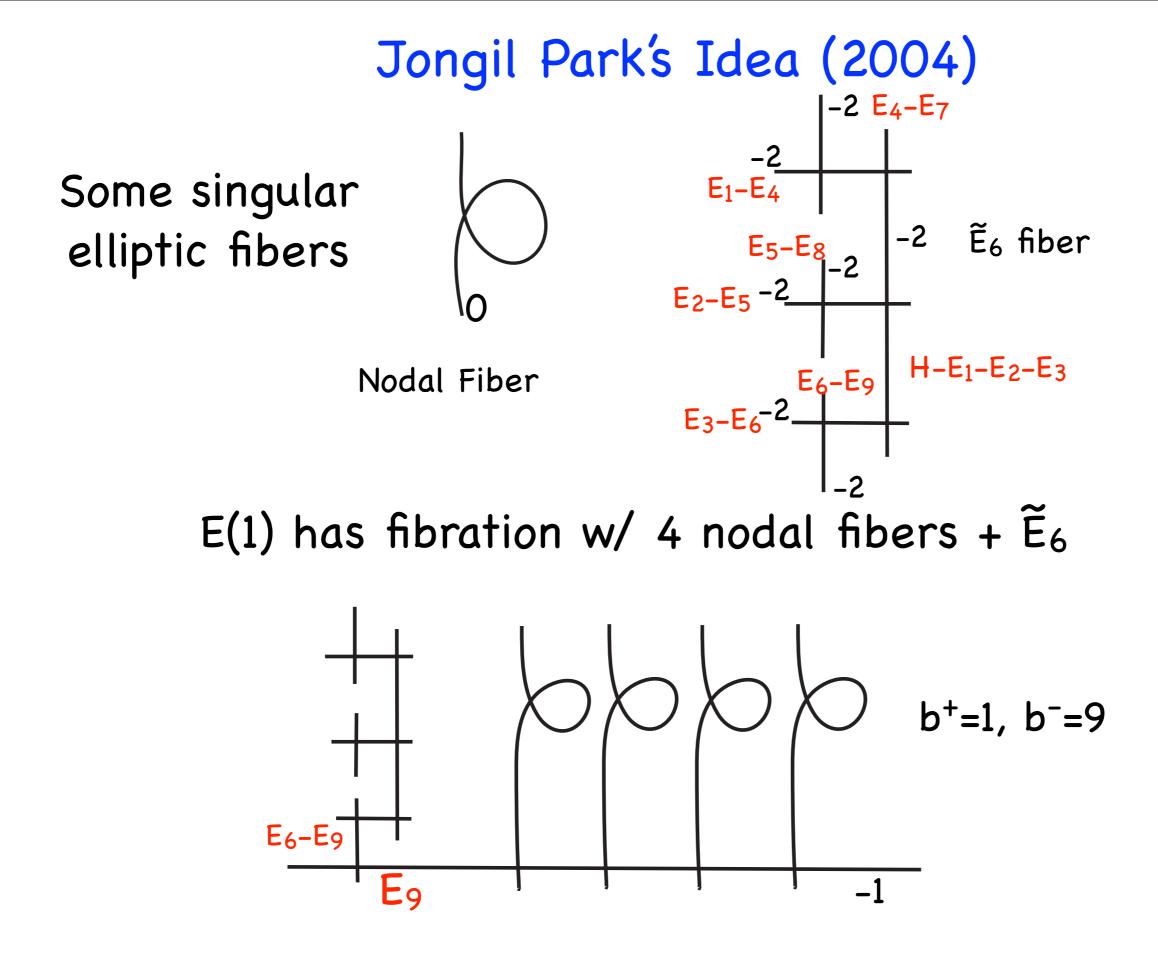


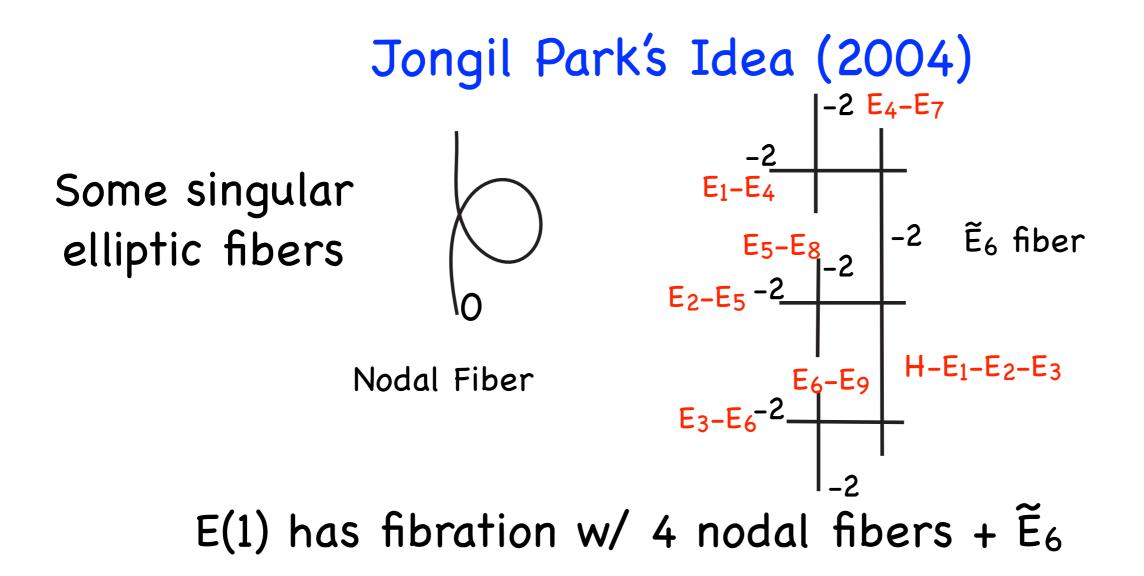
If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* <u>Thm.</u> (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SWX F-2E1 Ex. E_1 Blow $F-2E_1-E_2^{1}$ Blow up E(n)#CP E(n)# Nodal Fiber of E(n) rationally rationally blow down C₂ blow down C₃ log transform log transform E(n)₃ $E(n)_2$ of mult=3 of mult=2

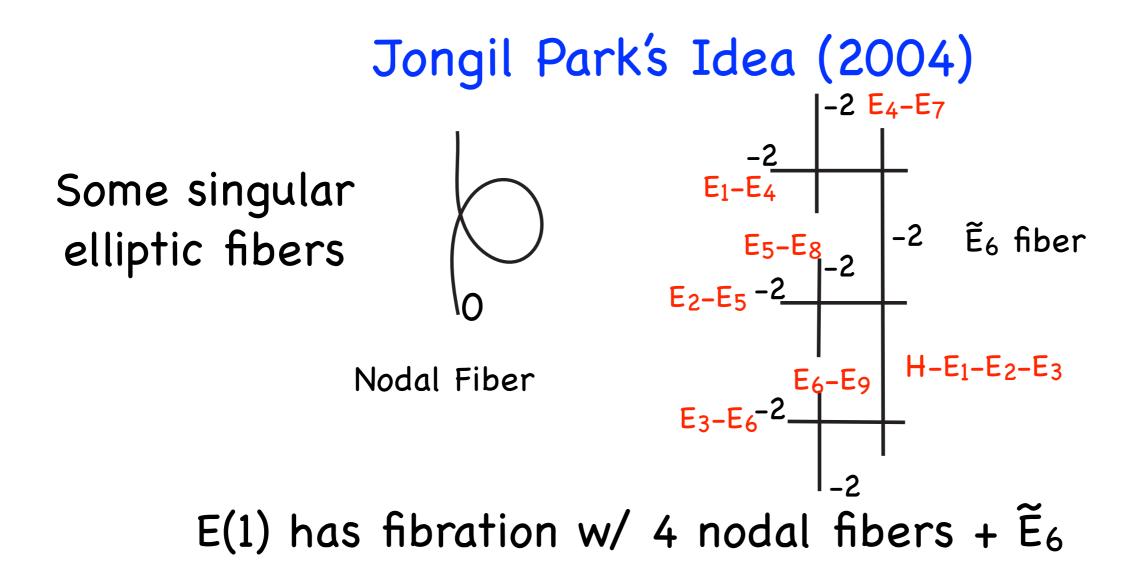
Jongil Park's Idea (2004)

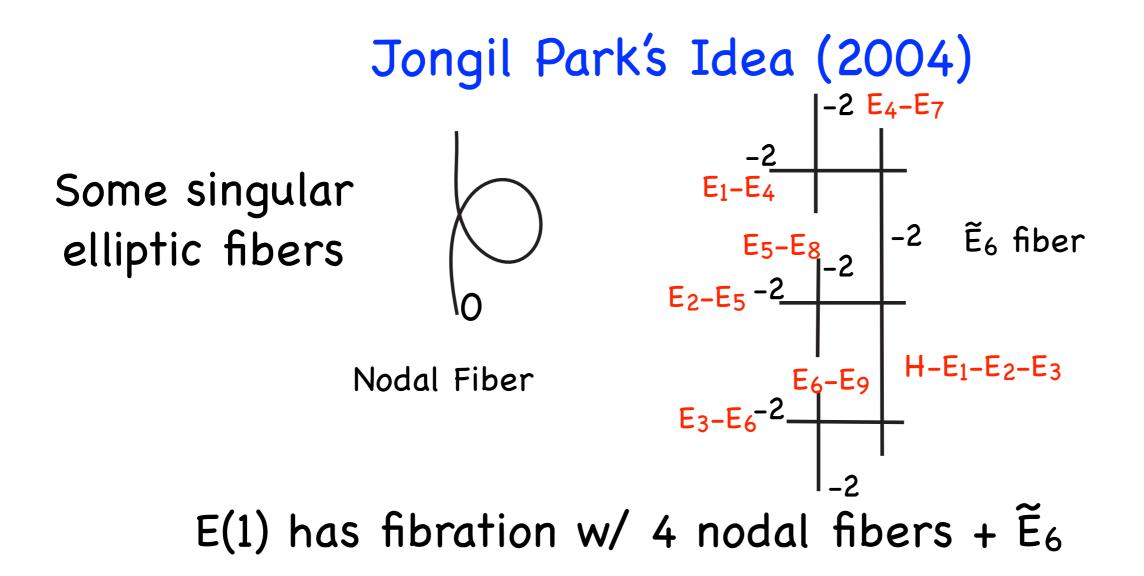


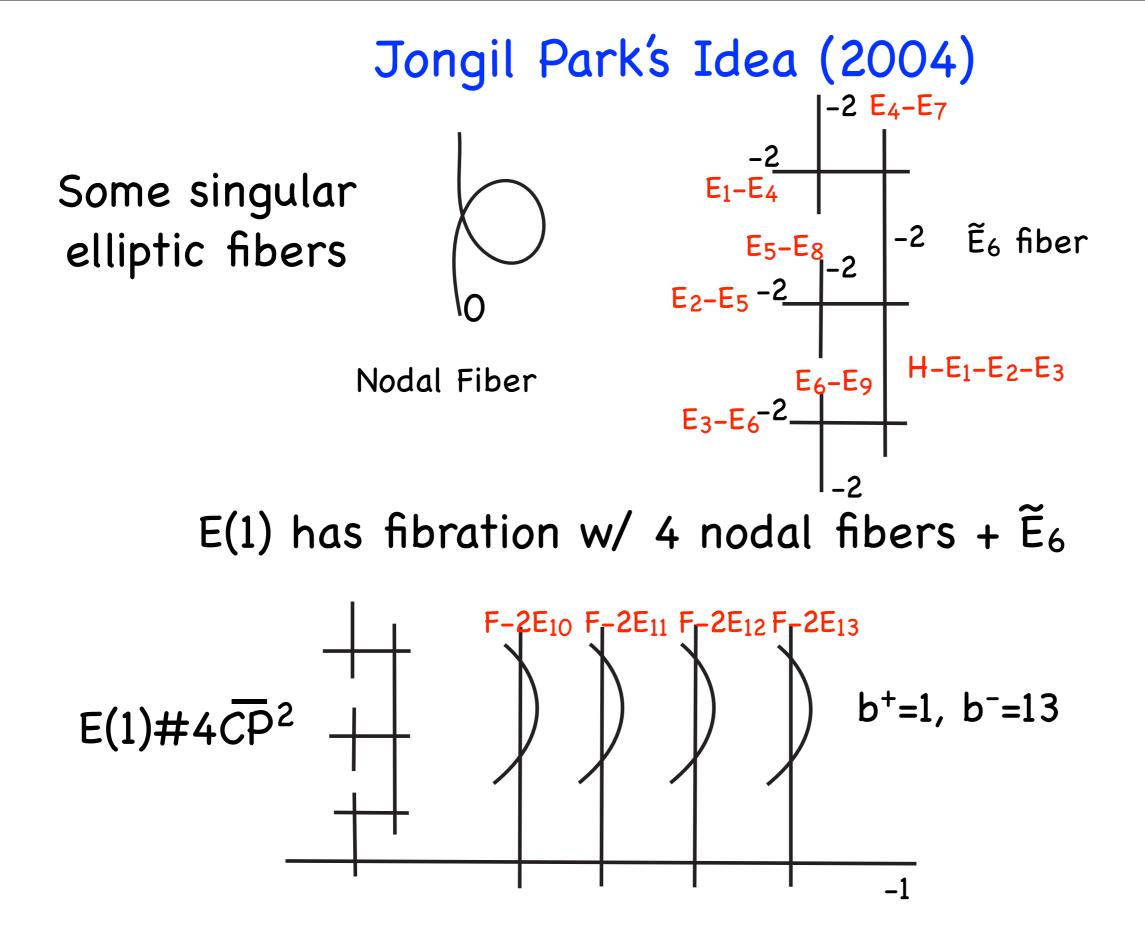


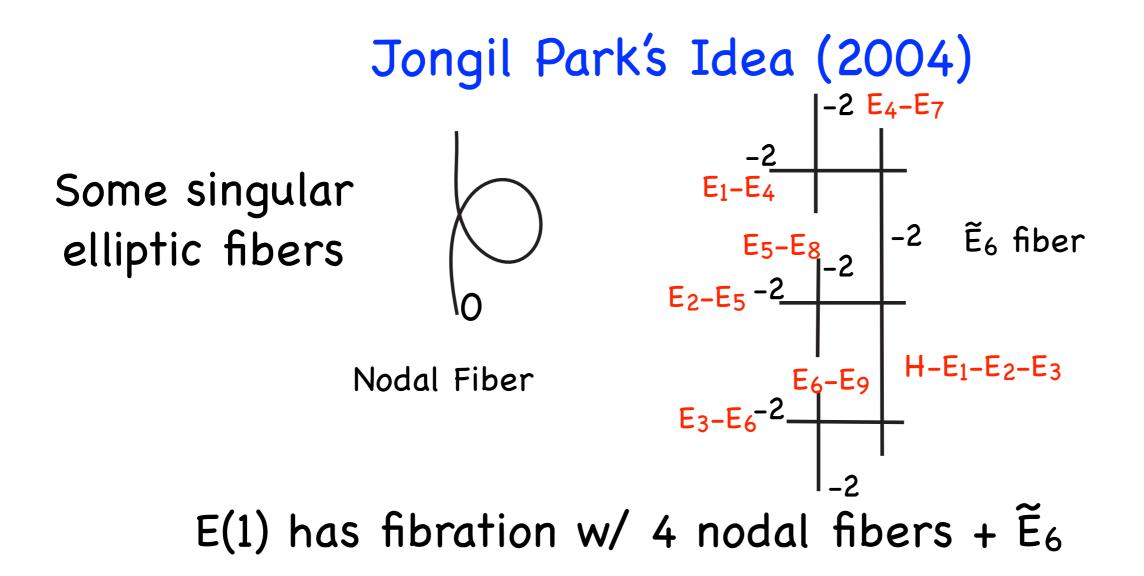


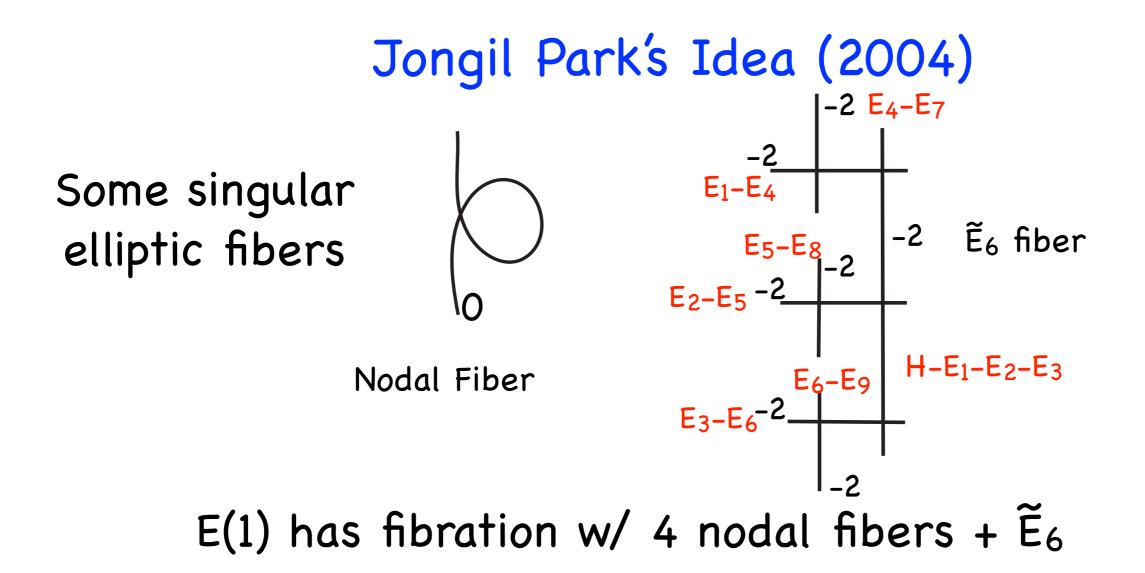




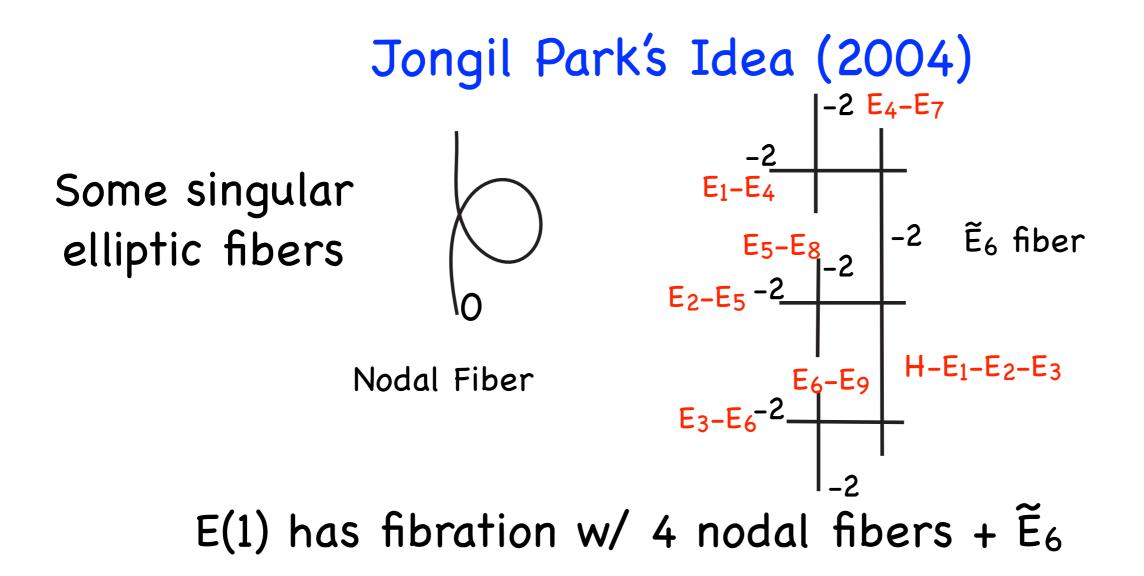


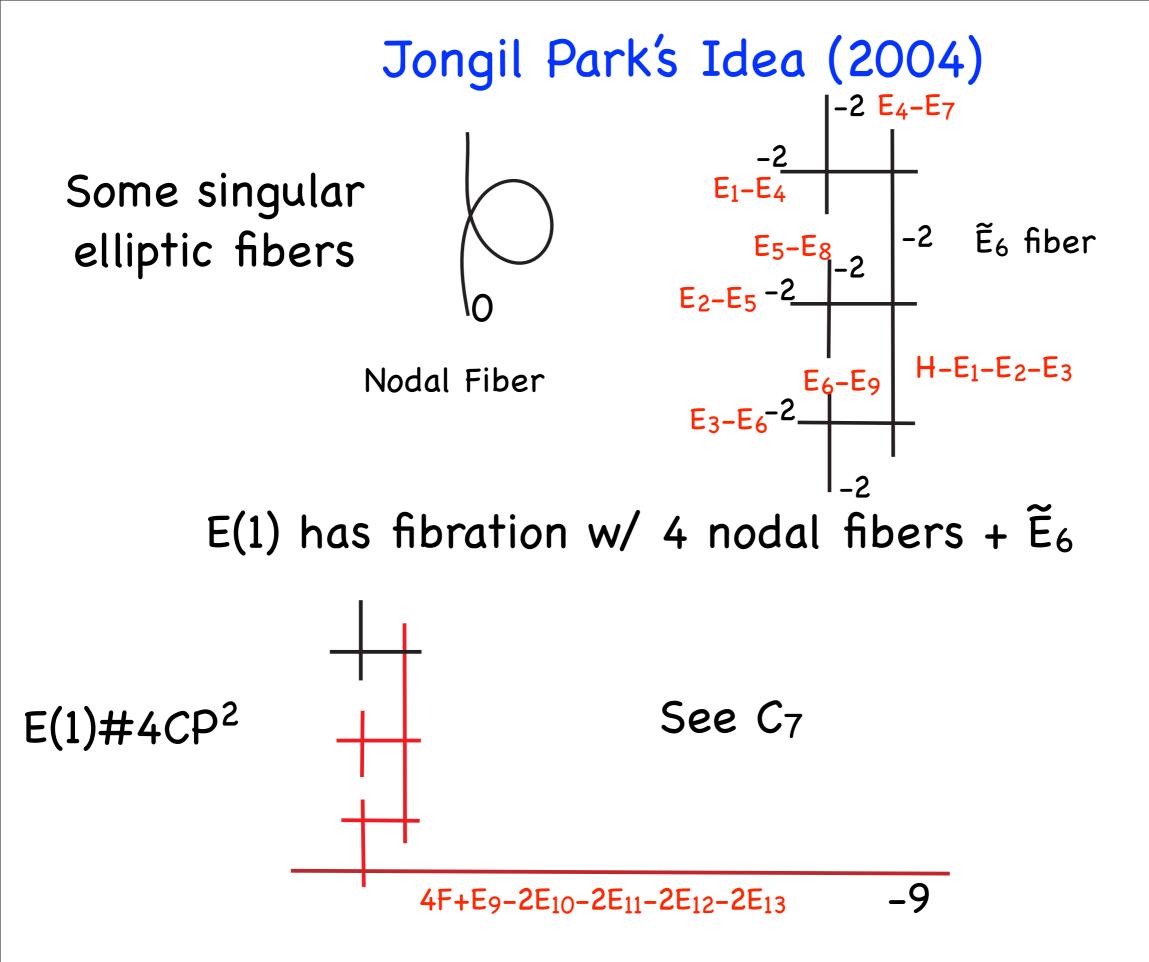


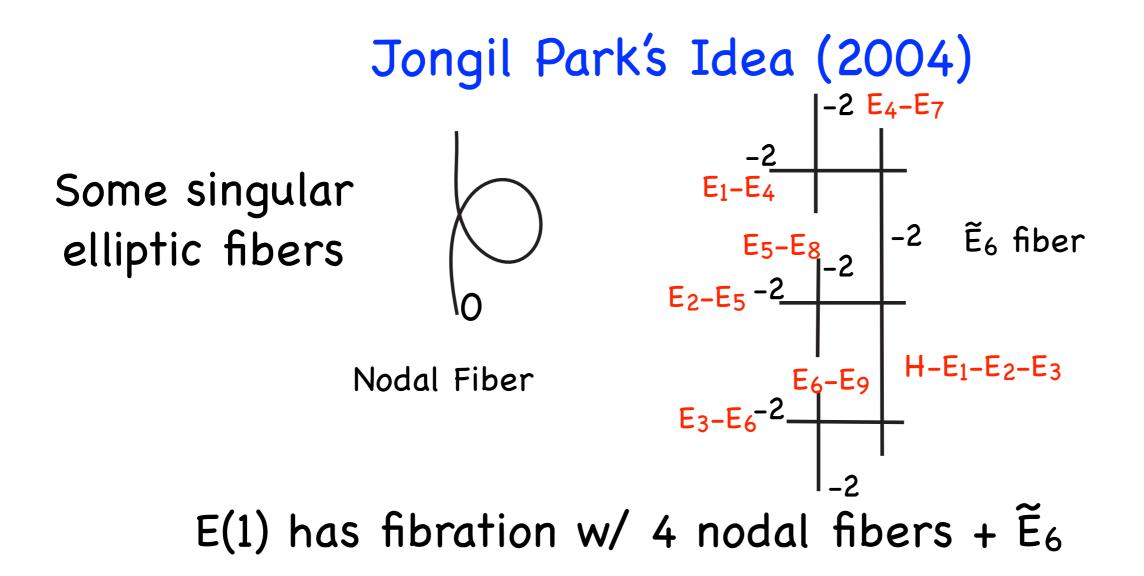


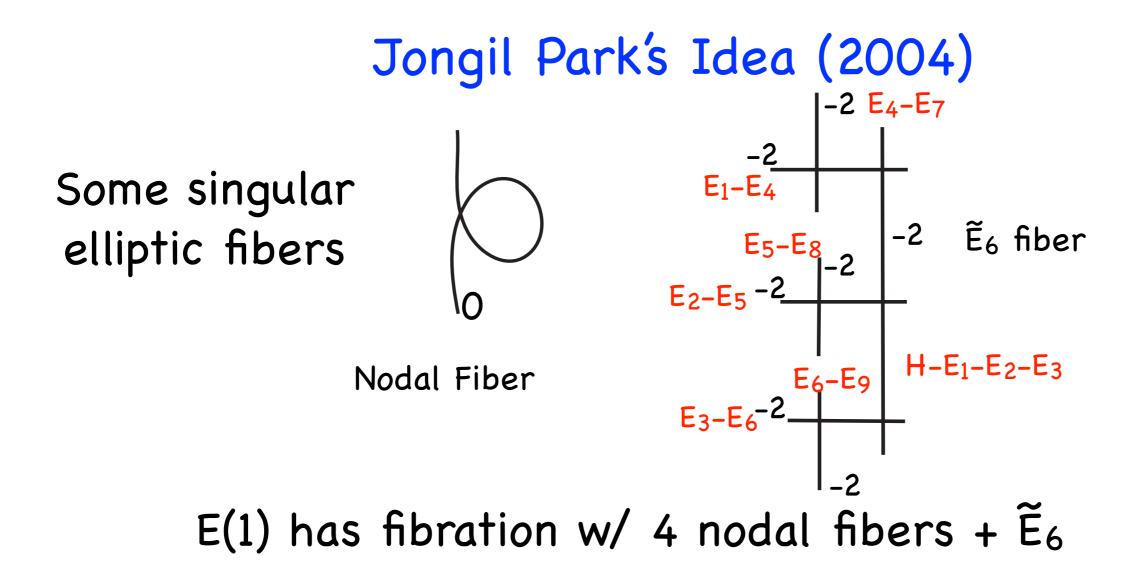


Resolve double points









Rationally blow down to get Park mfd P b+=1, b-=13-6=7 and simply connected & SW≠0 - an exotic CP²#7CP²

• P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t - t^{-1}$ (This \Rightarrow minimality by blowup formula)

- P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t t^{-1}$ (This \Rightarrow minimality by blowup formula)
- (Stipsicz-Szabo) ∃ sympl 4-mfd homeo not diffeo to CP²#6CP² (similar technique)

- P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t t^{-1}$ (This \Rightarrow minimality by blowup formula)
- (Stipsicz-Szabo) ∃ sympl 4-mfd homeo not diffeo to CP²#6CP² (similar technique)
- (F-Stern) All these examples b⁺=1, b⁻=6,7,8 admit
 ∞'ly many smooth str's

- P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t t^{-1}$ (This \Rightarrow minimality by blowup formula)
- (Stipsicz-Szabo) ∃ sympl 4-mfd homeo not diffeo to CP²#6CP² (similar technique)
- (F-Stern) All these examples b⁺=1, b⁻=6,7,8 admit
 ∞'ly many smooth str's
- (J.Park-Stipsicz-Szabo) Same for b⁺=1, b⁻=5

- P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t t^{-1}$ (This \Rightarrow minimality by blowup formula)
- (Stipsicz-Szabo) ∃ sympl 4-mfd homeo not diffeo to CP²#6CP² (similar technique)
- (F-Stern) All these examples b⁺=1, b⁻=6,7,8 admit
 ∞'ly many smooth str's
- (J.Park-Stipsicz-Szabo) Same for b⁺=1, b⁻=5
- Cx Surfaces of general type (J. Park & coauthors)

- P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t t^{-1}$ (This \Rightarrow minimality by blowup formula)
- (Stipsicz-Szabo) ∃ sympl 4-mfd homeo not diffeo to CP²#6CP² (similar technique)
- (F-Stern) All these examples b⁺=1, b⁻=6,7,8 admit
 ∞'ly many smooth str's
- (J.Park-Stipsicz-Szabo) Same for b⁺=1, b⁻=5
- Cx Surfaces of general type (J. Park & coauthors)
- These techniques do not seem to work for b^{-1}

back to surgery on tori, but -

<u>Prop</u>. If $b_X^+=1$, $b_X^-\le 8$, SW_X≠0, \nexists essential torus of square 0 in X.

back to surgery on tori, but -

<u>Prop</u>. If $b_{X=1}^{+}$, $b_{X\leq8}^{-}$, SW_X≠0, \nexists essential torus of square 0 in X.

If k has a nonzero coeff in SW_X, adjunction ≠ ⇒ k.T=0. But T²=0, k²≥c₁²>0 gives contra. by Cauchy-Schwarz ≠.

back to surgery on tori, but -

<u>Prop</u>. If $b_X^+=1$, $b_X^-\le 8$, SW_X≠0, \nexists essential torus of square 0 in X.

If k has a nonzero coeff in SW_X, adjunction ≠ ⇒ k.T=0. But T²=0, k²≥c₁²>0 gives contra. by Cauchy-Schwarz ≠.

If we could surger an essential torus (log transf or knot surgery)of square 0 in a mfd with b⁺=1 and b⁻≤8 to get SW≠0, we would be in the situation above.

back to surgery on tori, but -

<u>Prop</u>. If $b_X^+=1$, $b_X^-\le 8$, SW_X≠0, \nexists essential torus of square 0 in X.

If k has a nonzero coeff in SW_X, adjunction ≠ ⇒ k.T=0. But T²=0, k²≥c₁²>0 gives contra. by Cauchy-Schwarz ≠.

If we could surger an essential torus (log transf or knot surgery)of square 0 in a mfd with b⁺=1 and b⁻≤8 to get SW≠0, we would be in the situation above.

So we need to work with nullhomologous tori.

The Morgan, Mrowka, Szabo Surgery Formula

The Morgan, Mrowka, Szabo Surgery Formula

$T \subset X$: torus of square 0

N_T=nbd, ∂N_T =T³ basis $\alpha, \beta, \gamma = \partial D^2$ for H₁(∂N_T)

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square 0 $N_T = nbd, \partial N_T = T^3$ basis $\alpha, \beta, \gamma = \partial D^2$ for $H_1(\partial N_T)$ $X_{\{p,q,r\}} = (X - N_T) \cup_{\phi_{pqr}} (T^2 \times D^2)$ where $(\phi_{pqr})_* [\partial D^2] = p\alpha + q\beta + r\gamma$

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square O NT=nbd, $\partial N_T=T^3$ basis $\alpha, \beta, \gamma=\partial D^2$ for H₁(∂N_T) $X_{\{p,q,r\}}=(X-N_{T})\cup_{\substack{\varphi_{pqr}\\\varphi_{pqr}}} (T^{2}xD^{2})$ where $(\varphi_{pqr})_{*}[\partial D^{2}]=p\alpha+q\beta+r\gamma$ Write $SW_{X_{\{p,q,r\}}}(k_{pqr})$ (K_{pqr}) for the coefficient of k_{pqr} in SW_{X{p,q,r}}

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square O N_T=nbd, ∂N_T =T³ basis $\alpha, \beta, \gamma = \partial D^2$ for H₁(∂N_T) $X_{\{p,q,r\}}=(X-N_{T})\cup_{\substack{\varphi_{pqr}\\\varphi_{pqr}}} (T^{2}xD^{2})$ where $(\varphi_{pqr})_{*}[\partial D^{2}]=p\alpha+q\beta+r\gamma$ Write $SW_{X_{\{p,q,r\}}}(k_{pqr})$ for the coefficient of k_{pqr} in SW_{X{p,q,r}} M-M-Sz Formula: $\Sigma SW_{X_{p,q,r}}(k_{pqr}) =$ $p\Sigma SW_{X_{\{1,0,0\}}}(k_{100})+q\Sigma SW_{X_{\{0,1,0\}}}(k_{010})+r\Sigma SW_{X_{\{0,0,1\}}}(k_{001})$

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square O N_T=nbd, ∂N_T =T³ basis $\alpha, \beta, \gamma = \partial D^2$ for H₁(∂N_T) $X_{\{p,q,r\}}=(X-N_{T})\cup_{\substack{\varphi_{pqr}\\\varphi_{pqr}}} (T^{2}xD^{2})$ where $(\varphi_{pqr})_{*}[\partial D^{2}]=p\alpha+q\beta+r\gamma$ Write $SW_{X_{\{p,q,r\}}}(k_{pqr})$ for the coefficient of k_{pqr} in $SW_{X_{\{p,q,r\}}}$ M-M-Sz Formula: $\Sigma SW_{X_{p,q,r}}(k_{pqr}) =$ $p\Sigma SW_{X_{\{1,0,0\}}}(k_{100})+q\Sigma SW_{X_{\{0,1,0\}}}(k_{010})+r\Sigma SW_{X_{\{0,0,1\}}}(k_{001})$ " $SW_{X_{\{D,Q,r\}}} = pSW_{X_{\{1,0,0\}}} + qSW_{X_{\{0,1,0\}}} + rSW_{X_{\{0,0,1\}}}$ "

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square 0 N_T=nbd, ∂N_T =T³ basis $\alpha, \beta, \gamma = \partial D^2$ for H₁(∂N_T) $X_{\{p,q,r\}}=(X-N_{T})\cup_{\substack{\varphi_{pqr}\\\varphi_{pqr}}} (T^{2}xD^{2}) \\ where (\varphi_{pqr})_{*}[\partial D^{2}]=p\alpha+q\beta+r\gamma \\ Write SW_{X_{\{p,q,r\}}}(k_{pqr}) \\ (k_{pqr}) \\ Write SW_{X_{\{p,q,r\}}}(k_{pqr}) \\ Write SW_{X_{\{p,q,r\}}}(k_{p$ for the coefficient of k_{pqr} in $SW_{X_{\{p,q,r\}}}$ M-M-Sz Formula: $\Sigma SW_{X_{p,q,r}}(k_{pqr}) =$ $p\Sigma SW_{X_{\{1,0,0\}}}(k_{100})+q\Sigma SW_{X_{\{0,1,0\}}}(k_{010})+r\Sigma SW_{X_{\{0,0,1\}}}(k_{001})$ " $W_{X_{\{p,q,r\}}} = pSW_{X_{\{1,0,0\}}} + qSW_{X_{\{0,1,0\}}} + rSW_{X_{\{0,0,1\}}}$ " • $X_{\{0,0,1\}} = X$, and $X_{\{1,0,0\}}$ and $X_{\{0,1,0\}}$ are results of $S^1 \times O$ -surgeries

Ex: Want to construct exotic smooth str's on $CP^2 #n\overline{CP}^2$

Ex: Want to construct exotic smooth str's on CP²#nCP² Need to find useful nullhomologous torus T in mfd with b⁺=1, b⁻=n, π1=0

Ex: Want to construct exotic smooth str's on CP²#nCP² Need to find useful nullhomologous torus T in mfd with b⁺=1, b⁻=n, π1=0

(0,k,1)-surgery = $S^1x(1/k-Dehn surgery)$ has same homology as X if $\beta=0$ in H₁(X-T), and $SW_{X_{\{0,k,1\}}} \sim kSW_{X_{\{0,1,0\}}} + SW_{X_{\{0,0,1\}}=X}$ O-surgery

Ex: Want to construct exotic smooth str's on CP²#nCP² Need to find useful nullhomologous torus T in mfd with b⁺=1, b⁻=n, π1=0

(0,k,1)-surgery = $S^1x(1/k-Dehn surgery)$ has same homology as X if $\beta=0$ in $H_1(X-T)$, and $SW_{X_{\{0,k,1\}}} \sim kSW_{X_{\{0,1,0\}}} + SW_{X_{\{0,0,1\}}=X}$ O-surgery

⇒ If O-surgery on T wrt correct circle has SW≠O,
 we get ∞'ly many distinct mfds

Ex: Want to construct exotic smooth str's on CP²#nCP² Need to find useful nullhomologous torus T in mfd with b⁺=1, b⁻=n, π1=0

(0,k,1)-surgery = $S^1x(1/k-Dehn surgery)$ has same homology as X if $\beta=0$ in $H_1(X-T)$, and $SW_{X_{\{0,k,1\}}} \sim kSW_{X_{\{0,1,0\}}} + SW_{X_{\{0,0,1\}}=X}$ O-surgery

⇒ If O-surgery on T wrt correct circle has SW≠O, we get ∞'ly many distinct mfds

How to achieve this?

(a) T'⊂X' α',β',γ'=∂D² T' primitive γ'=0 in H1(X'-NT') β'≠0 in H1(X'-NT')

T'⊂X' α',β',γ'=∂D² T' primitive γ'=0 in H1(X'-NT') β'≠0 in H1(X'-NT')

(a)

T \subset X $\alpha,\beta,\gamma=\partial D^2$ T nullhomologous $\gamma \neq 0$ in H₁(X-N_T) $\beta=0$ in H₁(X-N_T)

(b)

(a) (b) $T' \subset X' \quad \alpha', \beta', \gamma' = \partial D^2$ $T \subset X \quad \alpha, \beta, \gamma = \partial D^2$ T' primitive T nullhomologous $\gamma' = 0 \text{ in } H_1(X' - N_T')$ $\gamma \neq 0 \text{ in } H_1(X - N_T)$ $\beta' \neq 0 \text{ in } H_1(X' - N_T')$ $\beta = 0 \text{ in } H_1(X - N_T)$

 $(0,1,1) \text{ surgery } \begin{array}{c} \beta' + \gamma' \leftrightarrow \gamma \\ \gamma' \leftrightarrow \beta \end{array}$

Surgery on Tori **(a) (b)** $T' \subset X' \quad \alpha', \beta', \gamma' = \partial D^2$ $T \subset X \quad \alpha, \beta, \gamma = \partial D^2$ T' primitive T nullhomologous y'=0 in $H_1(X'-N_{T'})$ $\gamma \neq 0$ in $H_1(X-N_T)$ $\beta' \neq 0$ in $H_1(X' - N_T')$ $\beta=0$ in $H_1(X-N_T)$ (0,1,1) surgery $\beta' + \gamma' \leftrightarrow \gamma$ $\gamma' \leftrightarrow \beta$ $\beta' \leftrightarrow -\beta + \gamma$ $\gamma' \leftrightarrow \beta$

(0,1,0) surgery

Surgery on Tori **(a) (b)** $T' \subset X' \quad \alpha', \beta', \gamma' = \partial D^2$ $T \subset X \quad \alpha, \beta, \gamma = \partial D^2$ T' primitive T nullhomologous y'=0 in $H_1(X'-N_{T'})$ $\gamma \neq 0$ in $H_1(X-N_T)$ $\beta' \neq 0$ in $H_1(X' - N_T')$ $\beta=0$ in $H_1(X-N_T)$ (0,1,1) surgery $\beta' + \gamma' \leftrightarrow \gamma$ $\gamma' \leftrightarrow \beta$ $\beta' \leftrightarrow -\beta + \gamma$ $\gamma' \leftrightarrow \beta$ (0,1,0) surgery $b_1(X) = b_1(X') - 1$ $SW_{X_{0,k,1}} = kSW_{X'}+SW_{X}$

Surgery on Tori **(a) (b)** $T' \subset X' \quad \alpha', \beta', \gamma' = \partial D^2$ $T \subset X \quad \alpha, \beta, \gamma = \partial D^2$ T' primitive T nullhomologous y'=0 in $H_1(X'-N_{T'})$ $\gamma \neq 0$ in $H_1(X-N_T)$ $\beta' \neq 0$ in $H_1(X' - N_T')$ $\beta = 0$ in $H_1(X - N_T)$ (0,1,1) surgery $\beta' + \gamma' \leftrightarrow \gamma$ $\gamma' \leftrightarrow \beta$ $\beta' \leftrightarrow -\beta + \gamma$ $\gamma' \leftrightarrow \beta$ (0,1,0) surgery $b_1(X) = b_1(X') - 1$ $SW_{X_{0,k,1}} = kSW_{X'}+SW_{X}$ Provides ∞-family in case SWX'≠0

X': sympl 4-mfd, T': Lagrangian torus in X'

X': sympl 4-mfd, T': Lagrangian torus in X' Preferred framing for T': Lagrangian framing

X': sympl 4-mfd, T': Lagrangian torus in X' Preferred framing for T': Lagrangian framing

1/k-surgeries w.r.t. this framing are again symplectic. (Auroux, Donaldson, Katzarkov) (Sometimes referred to as "Luttinger surgery")

Lagrangian Surgery

X': sympl 4-mfd, T': Lagrangian torus in X' Preferred framing for T': Lagrangian framing

1/k-surgeries w.r.t. this framing are again symplectic. (Auroux, Donaldson, Katzarkov) (Sometimes referred to as "Luttinger surgery")

This is how we can assure $SW_{X'}\neq 0$.

Want to construct exotic smooth str's on $\hat{X}.$

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as \hat{X} , but with $b_1 \neq 0$.

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as \hat{X} , but with $b_1 \neq 0$.

(2) Find b_1 disjoint Lagrangian tori in M containing gen's of H_1

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as X̂, but with b₁≠0.

(2) Find b_1 disjoint Lagrangian tori in M containing gen's of H_1

(3) Perform Luttinger surgeries on these tori, killing these gen's of H_1 .

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as \hat{X} , but with $b_1 \neq 0$.

(2) Find b_1 disjoint Lagrangian tori in M containing gen's of H_1

(3) Perform Luttinger surgeries on these tori, killing these gen's of H_1 .

(4) Result is sympl. mfd X with same e, sign as M, but
 with b₁ =0, H₂ reduced by b₁ hyp pairs, and
 X contains a useful nullhomologous torus T.

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as \hat{X} , but with $b_1 \neq 0$.

(2) Find b_1 disjoint Lagrangian tori in M containing gen's of H_1

(3) Perform Luttinger surgeries on these tori, killing these gen's of H_1 .

(4) Result is sympl. mfd X with same e, sign as M, but
 with b₁ =0, H₂ reduced by b₁ hyp pairs, and
 X contains a useful nullhomologous torus T.

(5) Get lucky, and compute $\pi_1(X)=0$.

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as \hat{X} , but with $b_1 \neq 0$.

(2) Find b_1 disjoint Lagrangian tori in M containing gen's of H_1

(3) Perform Luttinger surgeries on these tori, killing these gen's of H_1 .

(4) Result is sympl. mfd X with same e, sign as M, but
 with b₁ =0, H₂ reduced by b₁ hyp pairs, and
 X contains a useful nullhomologous torus T.

(5) Get lucky, and compute $\pi_1(X)=0$.

Get ∞ family if all 1/k-surgeries are s.c.

Model mfd: $M=Sym^2\Sigma_3$ same e & sign as $CP^2#3\overline{CP}^2$ $\pi_1(M)=H_1(\Sigma_3)$ (b₁=6)

Model mfd: $M=Sym^2\Sigma_3$ same e & sign as $CP^2#3\overline{CP}^2$ $\pi_1(M)=H_1(\Sigma_3)$ (b₁=6)

Has disjoint Lagrangian tori carrying basis for H_1

Model mfd: $M=Sym^2\Sigma_3$ same e & sign as $CP^2#3\overline{CP}^2$ $\pi_1(M)=H_1(\Sigma_3)$ (b₁=6)

Has disjoint Lagrangian tori carrying basis for H_1

Six Lagr. +1-surgeries give sympl mfd X with $\pi_1(X)=0$ SW_X ≠0 $\Rightarrow X \neq CP^2 \# 3\overline{CP}^2$

> Nullhomologous torus T⊂X & 1/k-surgeries give ∞ family

Model mfd: $M=Sym^2\Sigma_3$ same e & sign as $CP^2#3\overline{CP}^2$ $\pi_1(M)=H_1(\Sigma_3)$ (b₁=6)

Has disjoint Lagrangian tori carrying basis for H_1

Six Lagr. +1-surgeries give sympl mfd X with $\pi_1(X)=0$ SW_X ≠0 $\Rightarrow X \neq CP^2 \# 3\overline{CP}^2$

> Nullhomologous torus T⊂X & 1/k-surgeries give ∞ family

Baldridge-KirkTheir models constructedAkhmedov-Parkby cut-and-paste

• Find appropriate Kahler surface (as in last example)

- Find appropriate Kahler surface (as in last example)
- Construct via cut-and-paste.

- Find appropriate Kahler surface (as in last example)
- Construct via cut-and-paste.

(Akhmedov and Park do this to construct exotic $CP^2 # 2CP^2$'s)

- Find appropriate Kahler surface (as in last example)
- Construct via cut-and-paste.

(Akhmedov and Park do this to construct exotic $CP^2 # 2CP^2$'s)

 Santeria Surgery – Find a useful nullhomologous torus directly in a standard mfd

- Find appropriate Kahler surface (as in last example)
- Construct via cut-and-paste.

(Akhmedov and Park do this to construct exotic $CP^2 # 2CP^2$'s)

 Santeria Surgery – Find a useful nullhomologous torus directly in a standard mfd
 (Stern and I have shown how to do this in CP²#nCP² for 2≤n≤7.)

Rational surface: CP²#nCP², K=-3H+E₁+...+E_n say 0≦n<9, so c₁²>0.

Rational surface: CP²#nCP², K=-3H+E₁+...+E_n say 0≦n<9, so c₁²>0.

K not holo, <u>-K is</u>. K rep by torus

Rational surface: CP²#nCP², K=-3H+E₁+...+E_n say O≦n<9, so c₁²>0. K not holo, <u>-K is</u>. K rep by torus Seek exotic sympl. mfd X homeo to CP²#nCP² with K_X pseudoholo.

Rational surface: CP²#nCP², K=-3H+E₁+...+E_n say 0≦n<9, so c₁²>0.

K not holo, <u>-K is</u>. K rep by torus

Seek exotic sympl. mfd X homeo to CP²#nCP² with K_X pseudoholo.

Adj formula would $\Rightarrow K_X$ rep. by surface of genus 10-n (not a torus)

Rational surface: CP²#nCP², K=-3H+E₁+...+E_n say 0≦n<9, so c₁²>0.

K not holo, <u>-K is</u>. K rep by torus

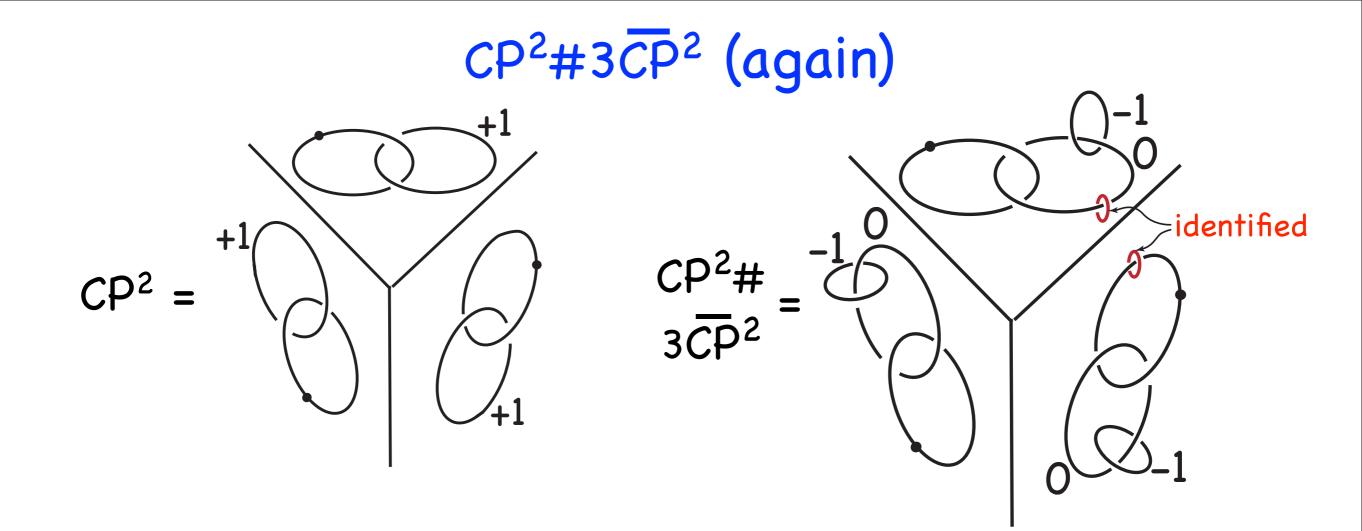
Seek exotic sympl. mfd X homeo to CP²#nCP² with K_X pseudoholo.

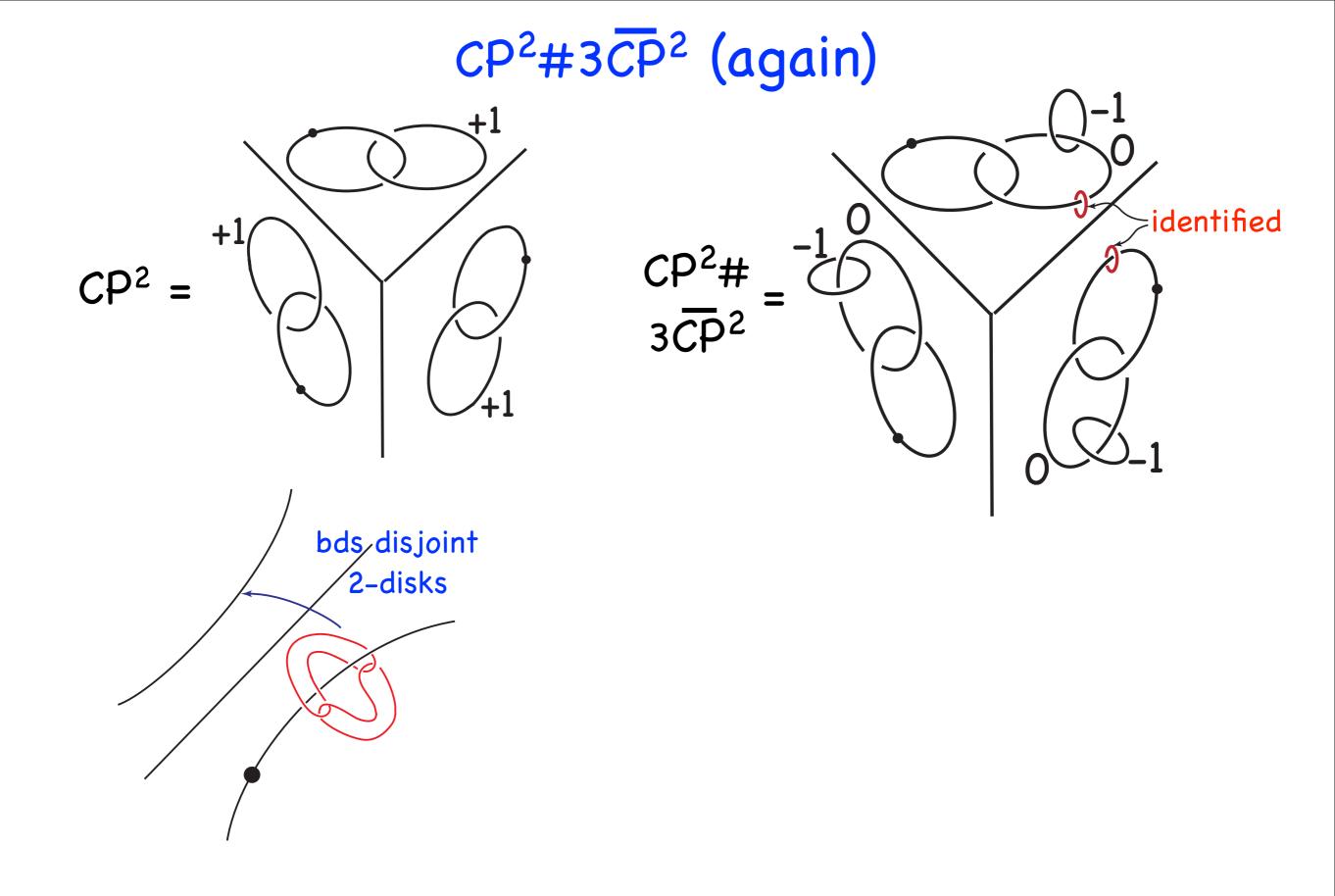
Adj formula would $\Rightarrow K_X$ rep. by surface of genus 10-n (not a torus)

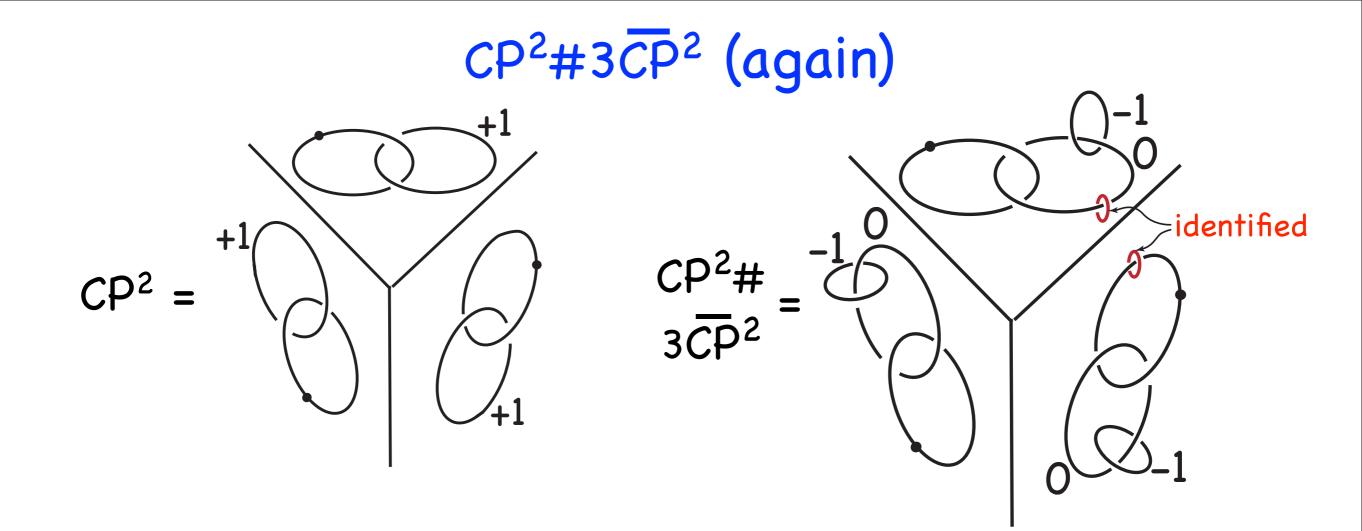
Need to look for tori to surger in $CP^2 # n\overline{CP}^2$ such that genus of K is "forced up"

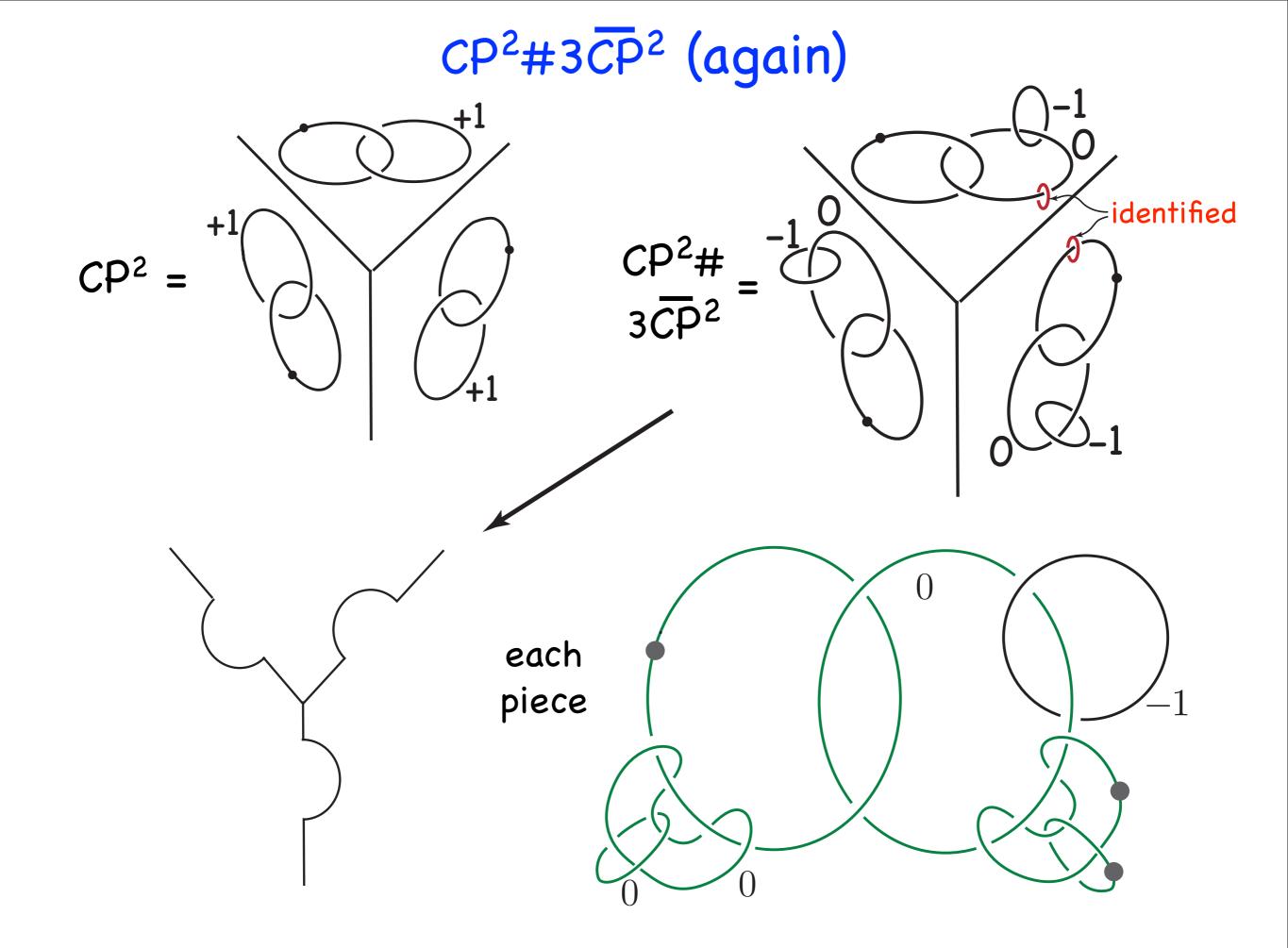
CP²#3CP² (again)

$CP^{2}\#3\overline{CP}^{2} \text{ (again)}$ $CP^{2} = \overset{+1}{\bigvee} \overset{+1}$

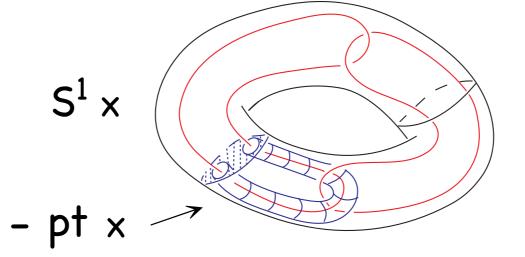






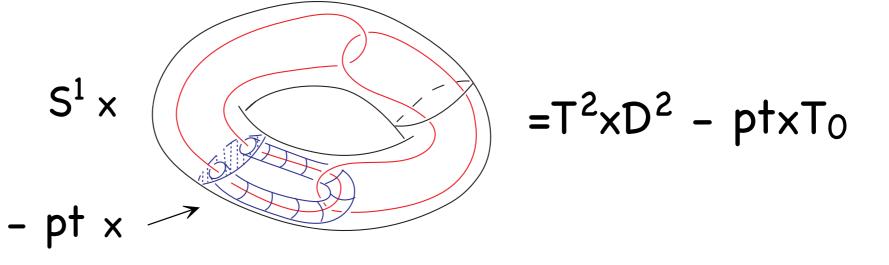


A=Green part=

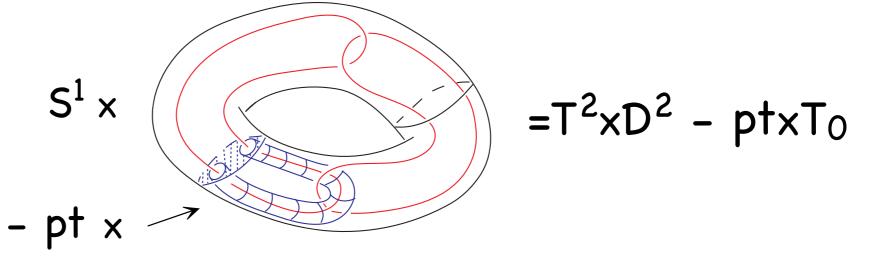


$$=T^2 x D^2 - pt x T_0$$

A=Green part=



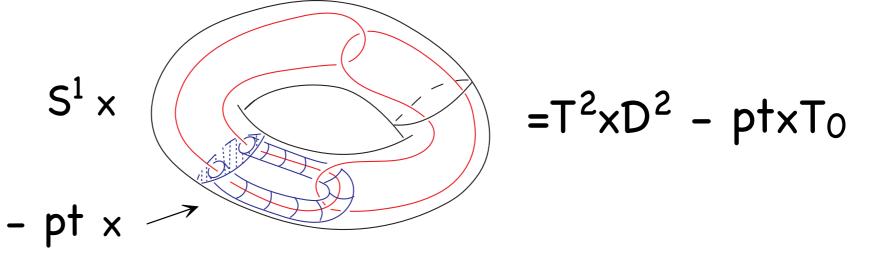
contains pair of "Bing tori"



contains pair of "Bing tori"

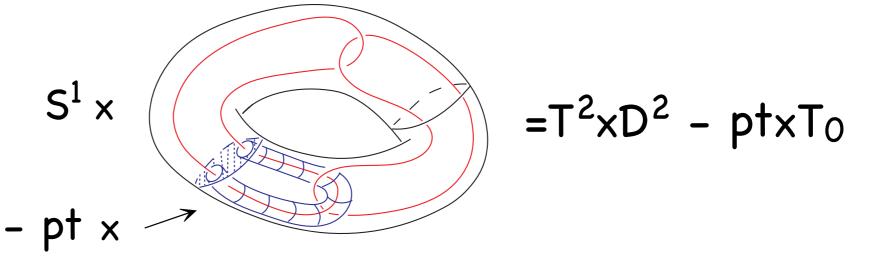
 $K_{CP^2#3CP^2}$ intersects this in pair of normal disks

A=Green part=



contains pair of "Bing tori"

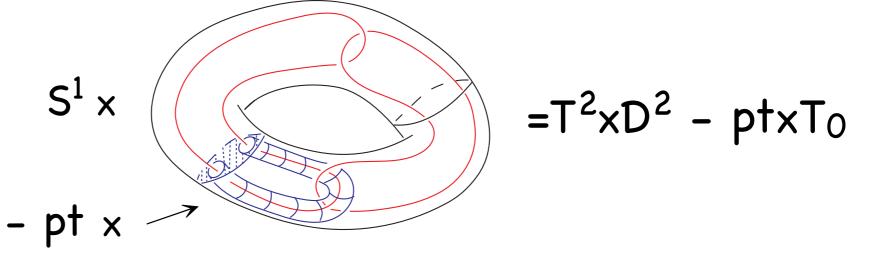
$K_{CP^2#3CP^2}$ intersects this in pair of normal disks Surgery on both Bing tori forces genus of K up by 2.



contains pair of "Bing tori"

K_{CP²#3CP²} intersects this in pair of normal disks
Surgery on both Bing tori forces genus of K up by 2.
Do all 6 surgeries to get sympl mfd ≅ CP²#3CP²
and SW≠0 - and genus(K)=1+6=7

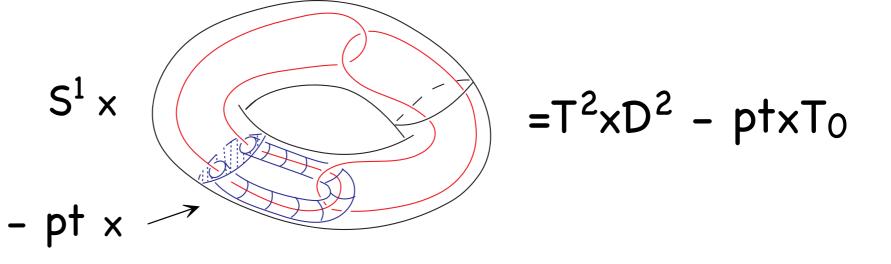
A=Green part=



contains pair of "Bing tori"

K_{CP²#3CP²} intersects this in pair of normal disks Surgery on both Bing tori forces genus of K up by 2. Do all 6 surgeries to get sympl mfd ≅ CP²#3CP² and SW≠0 – and genus(K)=1+6=7
•One surgery will suffice

A=Green part=

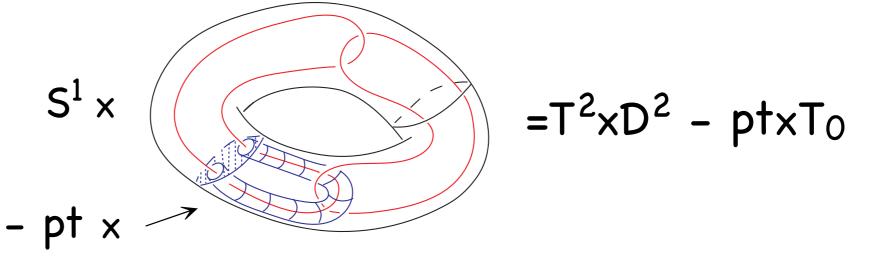


contains pair of "Bing tori"

 $K_{CP^2#3CP^2}$ intersects this in pair of normal disks Surgery on both Bing tori forces genus of K up by 2. Do all 6 surgeries to get sympl mfd $\cong CP^2#3CP^2$ and SW $\neq 0$ – and genus(K)=1+6=7

•One surgery will suffice •Similar constr of exotic $CP^2 # 2\overline{CP}^2$

A=Green part=



contains pair of "Bing tori"

 $K_{CP^2#3CP^2}$ intersects this in pair of normal disks Surgery on both Bing tori forces genus of K up by 2.

Do all 6 surgeries to get sympl mfd $\cong CP^2 # 3CP^2$

and SW≠0 – and genus(K)=1+6=7

•One surgery will suffice •Similar constr of exotic $CP^2 # 2\overline{CP}^2$

Moral: Look for useful emb's of A.

• 3 exotic smooth str's on $CP^2 \# n\overline{CP}^2$, $2 \le n \le 9$

- 3 exotic smooth str's on $CP^2 # n \overline{CP}^2$, $2 \le n \le 9$
- ∃ exotic smooth str's on CP²#nCP², n≥10 (but no examples minimal, and c₁²<0 for these)

- 3 exotic smooth str's on $CP^2 # n \overline{CP}^2$, $2 \le n \le 9$
- ∃ exotic smooth str's on CP²#nCP², n≥10 (but no examples minimal, and c₁²<0 for these)
- Open: CP^2 , $CP^2 # \overline{CP}^2$, $S^2 \times S^2$

- 3 exotic smooth str's on $CP^2 # n \overline{CP}^2$, $2 \le n \le 9$
- ∃ exotic smooth str's on CP²#nCP², n≥10 (but no examples minimal, and c₁²<0 for these)
 Open: CP² CP²#CP² S²×S²
- Open: CP^2 , $CP^2 # \overline{CP}^2$, $S^2 \times S^2$
- ∃ proposed examples for S²xS² but π₁ calculation incorrect
 These use reverse eng. with model M=Σ₂ bundle over Σ₂ ⇒ M aspherical

- 3 exotic smooth str's on $CP^2 # n\overline{CP}^2$, $2 \le n \le 9$
- ∃ exotic smooth str's on CP²#nCP², n≥10 (but no examples minimal, and c₁²<0 for these)
 On any CD² CD² u CD² c² u CD²
- Open: CP^2 , $CP^2 # \overline{CP}^2$, $S^2 \times S^2$
- \exists proposed examples for $S^2 x S^2$ but π_1 calculation incorrect These use reverse eng. with model $M=\Sigma_2$ bundle over Σ_2 $\Rightarrow M$ aspherical

<u>Conjecture</u>: The result of Lagrangian (i.e. Luttinger) surgery on a symplectically aspherical 4-mfd is again sympl. asph. ($\Rightarrow \pi_1$ infinite).

- 3 exotic smooth str's on $CP^2 # n \overline{CP}^2$, $2 \le n \le 9$
- ∃ exotic smooth str's on CP²#nCP², n≥10 (but no examples minimal, and c₁²<0 for these)
- Open: CP^2 , $CP^2 # \overline{CP}^2$, $S^2 x S^2$

• \exists proposed examples for $S^2 \times S^2$ but π_1 calculation incorrect These use reverse eng. with model $M=\Sigma_2$ bundle over Σ_2 $\Rightarrow M$ aspherical

<u>Conjecture</u>: The result of Lagrangian (i.e. Luttinger) surgery on a symplectically aspherical 4-mfd is again sympl. asph. ($\Rightarrow \pi_1$ infinite).

(Very) Optimistic Conj. Every s.c smooth 4-mfd can be obtained from surgery on tori in a conn. sum of copies of S^4 , CP^2 , \overline{CP}^2 , and S^2xS^2 .