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Introduction Ratemaking and risk classification

Insurance ratemaking and risk classification

Ratemaking (or pricing): a major task of an actuary

calculate a predetermined price in exchange for the uncertainty

probability of occurrence, timing, financial impact

Risk classification

the art and science of grouping insureds into homogeneous (similar),
independent risks

the same premium cannot be applied for all insured risks in the
portfolio

‘good risks’ may feel paying too much and leave the company; ‘bad
risks’ may favor uniform price and prefer to stay

spiral effect of having a disproportionate number of ‘bad risks’

to stay in business, you keep increasing premium
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Introduction Ratemaking and risk classification

Risk classification

Risk classification system must:

lead to fairness among insured individuals

ensure the financial soundness of the insurance company

What risk classification is not:

about predicting the experience for an individual risk: impossible and
unnecessary

should not reward or penalize certain classes of individuals at the
expense of others

See American Academy of Actuaries (AAA) Risk Classification
Statement of Principles
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Introduction Ratemaking and risk classification

Statistical or actuarial considerations

Constructing a risk classification system involves the selection of
classifying or rating variables which must meet certain actuarial criteria:

the rating variable must be accurate in the sense that it has a direct
impact on costs

the rating variable must meet homogeneity requirement in the sense
that the resulting expected costs within a class are reasonably similar

the rating variable must be statistically credible and reliable
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Introduction a priori vs a posteriori

a priori vs a posteriori

With a priori risk classification, the actuary lacks (individual) measurable
information about the policyholder to make a more informed decision:

unable to identify all possible important factors

especially the unobservable or the unmeasurable

makes it more difficult to achieve a more homogeneous classification

With a posteriori risk classification, the actuary makes use of an
experience rating mechanism:

premiums are re-evaluated by taking into account the history of
claims of the insured

the history of claims provide additional information about the driver’s
unobservable factors

E.A. Valdez (Mich State Univ) IWAP2014, Antalya 15-19 June 2014 5 / 35



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction statistical techniques

Statistical techniques of risk classification

a priori techniques:

(ordinary) linear regression, e.g. Lemaire (1985) on automobile
insurance

Generalized Linear Models (GLMs)

Generalized Additive Models (GAMs)

Generalized count distribution models and heavy-tailed regression

a posteriori techniques:

experience rating schemes: No Claim Discounts, Bonus-Malus

models for clustered data (panel data, multilevel data models)

estimation methods: likelihood-based, Bayesian

use of Markov chain models
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A priori methods

Observable data for a priori rating
For existing portfolios, insurers typically keep track of frequency and
severity data:

Policyholder file:

underwriting information about the insured and its coverage (e.g.
age, gender, policy information such as coverage, deductibles and
limitations)

Claims file:

information about claims filed to the insurer together with amounts
and payments made

For each insured i, we can write the observable data as

{Ni, Ei,yi,xi}

where Ni is the number of claims and the total period of exposure Ei
during which these claims were observed, yi = (yi1, . . . , yiNi)

′
is the vector

of individual losses, and xi is the set of potential explanatory variables.
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A priori methods pure premium

Pure premium: claim frequency and claim severity

Define the aggregate loss as

Li = yi1 + · · ·+ yiNi

so that frequency and severity data can be combined into a pure premium
as

Pi =
Li
Ei

=
Ni

Ei
× Li
Ni

= Fi × Si,

where Fi refers to the claim frequency per unit of exposure and Si is the
claim severity for a given loss.

To determine the price, some premium principle can be applied (e.g.
expected value):

π[Pi] = E[Pi] = E[Fi]× E[Si].

For each frequency and severity component, the explanatory variables will
be injected.
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A priori methods GLM

Current practice: generalized linear models
Canonical density from the exponential family:

f(y) = exp
[
yθ − ψ(θ)

φ
+ c(y, φ)

]
,

where ψ(·) and c(·) are known functions, θ and φ are the natural and scale
parameters, respectively.

Members include, but not limited to, the Normal, Poisson, Binomial and
the Gamma distributions.

May be used to model either the frequency (count) or the severity
(amount).

The following are well-known:

µ = E[Y ] = ψ
′
(θ) and Var[Y ] = φψ

′′
(θ) = φV (µ),

where the derivatives are with respect to θ and V (·) is the variance
function.

E.A. Valdez (Mich State Univ) IWAP2014, Antalya 15-19 June 2014 9 / 35



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A priori methods GLM

Claim frequency models

The Poisson distribution model:

Pr(Ni = ni) =
exp (−λi)λni

i

ni!
,

Risk classification variables can be introduced through the mean parameter

λi = Ei exp (x
′
iβ).

The Negative Binomial model:

Pr(Ni = ni) =
Γ(α+ ni)
Γ(α)ni!

(
α

λi + α

)α( λi
λi + α

)ni

,

where α = τ/µ. Risk classification variables can be built through
µi = Ei exp (x

′
iβ), or through the use of a Poisson mixture with

Ni ∼ Poi(λiθ) with λi = Ei exp (x
′
iβ) and θ ∼ Γ(τ/µ, τ/µ).
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A priori methods GLM

Illustration for claim counts

Claim counts are modeled for an automobile insurance data set with
159,947 policies.

No classification variables considered here.

No. of Claims Observed Frequency Poisson Frequency NB Frequency

0 145,683 145,141 145,690
1 12,910 13,902 12,899
2 1,234 863 1,225
3 107 39 119
4 12 1.4 12
>4 1 0.04 1

-2 log Lik. 101,668 101,314
AIC 101,670 101,318
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A priori methods generalized count

Generalized count distributions
Mixtures The NB distribution is indeed a mixture of Poisson. Other
continuous mixtures of the Poisson include the Poisson-Inverse Gaussian
(‘PIG’) distribution and the Poisson-LogNormal (‘PLN’) distribution.
Panjer and Willmot (1992).

Zero-inflated models Here, N = 0 with probability p and N has
distribution Pr(N = n|θ) with probability 1− p. This gives the following
ZI distributional specification:

PrZI(N = n|p,θ) =

{
p+ (1− p)Pr(N = 0|θ), n = 0,
(1− p)Pr(N = n|θ), n > 0.

Hurdle models For hurdle models,

PrHur(N = 0|p,θ) = p,

PrHur(N = n|p,θ) =
1− p

1− Pr(0|θ)
Pr(N = n|θ), n > 0
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A priori methods generalized count

Illustration with ZI and hurdle Poisson models

Using the same set of data earlier introduced.

Still no classification variables considered here.

No. of Claims Observed NB ZI Poisson Hurdle Poisson

0 145,683 145,690 145,692 145,683
1 12,910 12,899 12,858 13,161
2 1,234 1,225 1,295 1,030
3 107 119 96 69
4 12 12 6 4
>4 1 1 0.28 0.18

-2 log Lik. 101,314 101,326 105,910
AIC 101,318 101,330 105,914
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A priori methods risk classification

Introducing risk classification in ZI and hurdle models

The common procedure is to introduce regressor variables through the
mean parameter using for example

µi = Ei exp (x
′
iβ)

and for the zero-part, use a logistic regression of the form

pi =
exp (z

′
iγ)

1 + exp (z′
iγ)

where xi and zi are sets of regressor variables.
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A priori methods risk classification

Risk classification variables

For the automobile insurance data, description of covariates used:

Covariate Description
Vehicle Age The age of the vehicle in years.
Cubic Capacity Vehicle capacity for cars and motors.
Tonnage Vehicle capacity for trucks.
Private 1 if vehicle is used for private purpose, 0 otherwise.
CompCov 1 if cover is comprehensive, 0 otherwise.
SexIns 1 if driver is female, 0 if male.
AgeIns Age of the insured.
Experience Driving experience of the insured.
NCD 1 if there is no ‘No Claims Discount’, 0 if discount is present. This is based on

previous accident record of the policyholder. The higher the discount, the better
the prior accident record.

TLength (Exposure) Number of calendar years during which claim counts are registered.
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A priori methods risk classification

Parameter estimates for various count models
Poisson NB ZIP

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Regression Coefficients: Positive Part
Intercept -3.1697 (0.0621) -3.1728 (0.0635) -2.6992 (0.1311)
Sex Insured

female -0.1339 (0.022) -0.1323 (0.0226) not used
male ref. group

Age Vehicle
≤ 2 years -0.0857 (0.0195) -0.08511 (0.02) -0.0853 (0.02)
> 2 and ≤ 8 years ref. group
> 8 years -0.1325 (0.0238) -0.1327 (0.024) -0.1325 (0.0244)

Age Insured
≤ 28 years 0.3407 (0.0265) 0.3415 (0.027) 0.34 (0.0273)
> 28 years and ≤ 35 years 0.1047 (0.0203) 0.1044 (0.0209) 0.1051 (0.0208)
> 35 and ≤ 68 years ref. group
> 68 years -0.4063 (0.0882) -0.4102 (0.0897) -0.408 (0.0895)

Private Car
Yes 0.2114 (0.0542) 0.2137 (0.0554) 0.2122 (0.0554)

Capacity of Car
≤ 1500 ref. group
> 1500 0.1415 (0.0168) 0.1406 (0.0173) 0.1412 (0.0172)

Capacity of Truck
≤ 1 ref. group
> 1 0.2684 (0.0635) 0.2726 (0.065) 0.272 (0.065)

Comprehensive Cover
Yes 1.0322 (0.0321) 1.0333 (0.0327) 0.8596 (0.1201)

No Claims Discount
No 0.2985 (0.0175) 0.2991 (0.0181) 0.2999 (0.018)

Driving Experience of Insured
≤ 5 years 0.1585 (0.0251) 0.1589 (0.0259) 0.1563 (0.0258)
> 5 and ≤ 10 years 0.0699 (0.0202) 0.0702 (0.0207) 0.0695 (0.0207)
> 10 years ref. group

Extra Par. α̂ = 2.4212
Regression Coefficients: Zero Part
Intercept -0.5124 (0.301))
Comprehensive Cover

Yes -0.5325 (0.3057)
Sex Insured

female 0.3778 (0.068)
male ref. group

Summary
-2 Log Likelihood 98,326 98,161 98,167
AIC 98,356 98,191 98,199

E.A. Valdez (Mich State Univ) IWAP2014, Antalya 15-19 June 2014 16 / 35



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A priori methods risk classification

Additive regression models

Generalized additive models (GAMs) allow for more flexible relations
between the response and a set of covariates.

For example:

logµi = ηi = Exposure + β0 + β1 ∗ I(Sex = F) + β2 ∗ I(NCD = 0)
+ β3 ∗ I(Cover = C) + β4 ∗ I(Private = 1) + f1(VAge)
+ f2(VehCapCubic) + f3(Experience) + f4(AgeInsured).
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A priori methods risk classification

Additive effects in a Poisson GAM - illustration
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A priori methods severity models

Some claim severity models

Distribution Density f(y) Conditional Mean E[Y ]

Gamma
1

Γ(α)
βαyα−1e−βy

α

β
= exp (x

′
γ)

Inverse Gaussian

(
λ

2πy3

)1/2

exp
[
−λ(y − µ)2

2µ2y

]
µ = exp (x

′
γ)

Lognormal
1√

2πσy
exp

[
−1

2

(
log y − µ

σ

)2
]

exp
(
µ+

1
2
σ2

)
with µ = exp (x

′
γ)
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A priori methods severity models

Parameter estimates for various severity models
Gamma Inverse Gaussian Lognormal

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept 8.1515 (0.0339) 8.1543 (0.0682) 7.5756 (0.0391)
Sex Insured

female not sign. not. sign. not sign.
male

Age Vehicle
≤ 2 years ref. group
> 2 and ≤ 8 years ref. group
> 8 years -0.1075 (0.02) -0.103 (0.0428) -0.1146 (0.0229)

Age Insured
≤ 28 years not sign. not sign. not sign.
> 28 years and ≤ 35 years
> 35 and ≤ 68 years
> 68 years

Private Car
Yes 0.1376 (0.0348) 0.1355 (0.0697) 0.1443 (0.04)

Capacity of Car
≤ 1500 ref. group ref. group ref. group
> 1500 and ≤ 2000 0.174 (0.0183) 0.1724 (0.04) 0.1384 (0.021)
> 2000 0.263 (0.043) 0.2546 (0.1016) 0.1009 (0.0498)

Capacity of Truck
≤ 1 not sign. not sign. not sign.
> 1

Comprehensive Cover
Yes not sign. not sign. not sign.

No Claims Discount
No 0.0915 (0.0178) 0.0894 (0.039) 0.0982 (0.0205)

Driving Experience of Insured
≤ 5 years not sign. not sign. not sign.
> 5 and ≤ 10 years
> 10 years ref. group

Extra Par. α̂ = 0.9741 λ̂ = 887.82 σ̂ = 1.167
Summary
-2 Log Likelihood 267,224 276,576 266,633
AIC 267,238 276,590 266,647
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A priori methods severity models

Other flexible parametric models for claim severity

The cumulative distribution functions for the Burr Type XII and the GB2
distribution are given, respectively by

FBurr,Y (y) = 1−
(

β

β + yτ

)λ
, y > 0, β, λ, τ > 0,

and

FGB2,Y (y) = B

(
(y/b)a

1 + (y/b)a
; p, q

)
, y > 0, a 6= 0, b, p, q > 0,

where B(·, ·) is the incomplete Beta function.

If the available covariate information is denoted by x, it is straightforward
to allow one or more of the parameters to vary with x.

The result can be called a Burr or a GB2 regression model.
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A priori methods severity models

Fire insurance portfolio

Burr (τ) Burr (β) GB2 (b) GB2 (a)
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept 0.46 (0.073) -4.921 (0.316) -8.446 (0.349) 0.049 (0.002)
Type 1 -0.327 (0.058) -2.521 (0.326) -2.5 (0.327) -0.012 (0.002)

2 -0.097 (0.06) -0.855 (0.325) -0.867 (0.317) -0.001 (0.002)
3 -0.184 (0.17) -1.167 (0.627) -1.477 (0.682) -0.003 (0.003)
4 -0.28 (0.055) -2.074 (0.303) -2.056 (0.3) -0.01 (0.002)
5 -0.091 (0.067) -0.628 (0.376) -0.651 (0.37) -0.003 (0.003)

Type 1*SI -0.049 (0.025) -0.383 (0.152) -0.384 (0.154) -0.002 (0.001)
2*SI 0.028 (0.028) 0.252 (0.174) 0.248 (0.18) 0.001 (0.001)
3*SI -0.51 (0.067) -2.098 (0.345) -2.079 (0.326) -0.006 (0.001)
4*SI -0.954 (0.464) -5.242 (1.429) -6.079 (1.626) -0.025 (0.006)
5*SI -0.074 (0.027) -0.614 (0.17) -0.598 (0.169) -0.001 (0.001)
6*SI -0.024 (0.037) -0.21 (0.223) -0.183 (0.235) -0.001 (0.001)

β 0.00023 (0.00013)
λ 0.457 (0.04) 0.444 (0.037)
τ 1.428 (0.071)
a 0.735 (0.045)
b 0.969 (0.114)
p 3.817 (0.12) 263.53 (0.099)
q 1.006 (0.12) 357 (0.132)
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A priori methods severity models

Fire insurance portfolio: residual QQ plots
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A posteriori methods

A posteriori risk classification

When constructing an a priori tariff structure, not all important risk
factors may be observable.

usually the situation for either a new policyholder or an existing one
with insufficient information

the result is lack of many important risk factors to meet the
homogeneity requirement

For a posteriori risk classification, the premiums are adjusted to
account for the available history of claims experience.

use of an experience rating mechanism - a long tradition in actuarial
science

the premise is that the claims history reveals more of the factors or
characteristics that were previously unobservable

the challenge is to optimally mix the individual claims experience and
that of the group to which the individual belongs

credibility theory - a well developed area of study in actuarial science
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A posteriori methods GLMM

Generalized linear mixed models

GLMMs are extensions to GLMs allowing for random, or subject-specific,
effects in the linear predictor.

Consider M subjects with each subject i (1 ≤ i ≤M), Ti observations are
available. Given the vector bi, the random effects for subject (or cluster) i,
the repeated measurements Yi1, . . . , YiTi are assumed independent with
density from the exponential family

f(yit|bi,β, φ) = exp
(
yitθit − ψ(θit)

φ
+ c(yit, φ)

)
, t = 1, . . . , Ti,

and the following (conditional) relations hold

µit = E[Yit|bi] = ψ
′
(θit) and Var[Yit|bi] = φψ

′′
(θit) = φV (µit)

where g(µit) = x
′
itβ + z

′
itbi.
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A posteriori methods GLMM

The random effects
Specification of the GLMM is completed by assuming that bi
(i = 1, . . . ,M) are mutually independent and identically distributed
with density

f(bi|α).
α denotes the unknown parameters in the density.

common to assume the random effects have a (multivariate) normal
distribution with zero mean and covariance matrix determined by α

dependence between observations on the same subject arises because
they share the same random effects bi.

The likelihood function for the unknown parameters is

L(β,α, φ;y) =
M∏
i=1

f(yi|α,β, φ)

=
M∏
i=1

∫ Ti∏
t=1

f(yit|bi,β, φ)f(bi|α)dbi.
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A posteriori methods GLMM

Poisson GLMM
Let Nit be the claim frequency in year t for policyholder i. Assume that,
conditional on bi, Nit follows a Poisson with mean
E[Nit|bi] = exp (x

′
itβ + bi) and that bi ∼ N(0, σ2

b ).

Straightforward calculations lead to

Var(Nit) = Var(E(Nit|bi)) + E(Var(Nit|bi))
= E(Nit)(exp (x

′
itβ)[exp (3σ2

b/2)− exp (σ2
b/2)] + 1),

and

Cov(Nit1 , Nit2) = Cov(E(Nit1 |bi),E(Nit2 |bi)) + E(Cov(Nit1 , Nit2 |bi))
= exp (x

′
it1β) exp (x

′
it2β)(exp (2σ2

b )− exp (σ2
b )).

We used the expressions for the mean and variance of a Lognormal
distribution. For the covariance we used the fact that, given the random
effect bi, Nit1 and Nit2 are independent.
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A posteriori methods GLMM

Poisson GLMM - continued

Now, if we assume that, conditional on bi, Nit follows a Poisson
distribution with mean E[Nit|bi] = exp (x

′
itβ + bi) and that

bi ∼ N(−σ2
b
2 , σ

2
b ).

This re-parameterization is commonly used in ratemaking. Indeed, we now
get

E[Nit] = E[E[Nit|bi]] = exp
(
x

′
itβ −

σ2
b

2
+
σ2
b

2

)
= exp (x

′
itβ),

and
E[Nit|bi] = exp (x

′
inβ + bi).

This specification shows that the a priori premium, given by exp (x
′
itβ), is

correct on the average.

The a posteriori correction to this premium is determined by exp (bi).
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A posteriori methods GLMM

Numerical illustration
Data consist of 12,893 policyholders observed during (fractions of) the
period 1993-2003. Let Nit be the number of claims registered for
policyholder i in period t. The model specification:

Nit|bi ∼ Poi(µit|bi) and µit|bi = eit exp (x
′
itβ + bi)

bi ∼ N(−σ2/2, σ2),

The a priori premium is given by

(a priori) E[Nit] = eit exp (x
′
itβ).

The a posteriori premium is given by:

(a posteriori) E[Nit|bi] = eit exp (x
′
itβ + bi).

The ratio of the two is called the theoretical Bonus-Malus Factor (BMF).
It reflects the extent to which the policyholder is rewarded or penalized for
past claims.
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A posteriori methods GLMM

Figure 5
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Left panel: Boxplot of the conditional distribution of bi, given the history
Ni1, . . . , Nini , for a random selection of 20 policyholders. Right panel: For
the same selection of policyholders: boxplots with simulations from the a
priori (red) and a posteriori (grey) premium.
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Remarks

Remarks

This paper makes several distinctions in the modeling aspects involved in
ratemaking:

a priori vs a posteriori risk classification in ratemaking

claim frequency and claim severity make up for the calculation of a
pure premium

the form of the data that may be recorded, become available to the
insurance company and are used for calibrating models:

a priori : the data usually are cross-sectional

a posteriori : the recorded data may come in various layers: multilevel
(e.g. panel, longitudinal) or other types of clustering, transitions for
bonus-malus schemes
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Life insurance

Risk classification in life insurance

Gschlossl, S., Schoenmaekers, P., Denuit, M., 2011, Risk classification in
life insurance: methodology and case study, European Actuarial Journal, 1:
23-41.

Start with n invidiuals all aged x, observed a period of time and during
this period, each individual is either dead or alive:

δi =

{
1, if individual i dies,

0, otherwise

Let τi be the time spent by the individual i during the period. In summary,
we observe n independent and identically distributed observations (δi, τi)
for i = 1, 2, . . . , n.
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Life insurance Poisson model

Poisson model

If the individual is alive, his contribution to the likelihood is exp(−τiµx). If
dead, his contribution is µx exp(−τiµx).

Thus the aggregate likelihood contribution of all individuals observed can
be expressed as

L(µx) =
n∏
i=1

(µx)δi exp(−τiµx) = (µx)dx exp(−Exµx),

where dx =
∑n

i=1 δi is the total number of deaths and Ex =
∑n

i=1 τi is the
total exposure.

This likelihood is proportional to the likelihood of a Poisson number of
deaths: Dx ∼ Poisson(Exµx).
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Life insurance Poisson regression

Poisson regression model

There is usually heterogeneity among the individual lives (age, gender,
lifestyle, income, etc.) and this can be accounted for using a Poisson
regression model.

In this context, we would assume we have a set of covariates say
xi = (1, xi1, xi2, . . . , xik)′, which here we include an intercept.

We link these covariates to the death rates through a log-linear function as
follows:

log(µi) = x′iβ

The β coefficients in this case have the interpretation of a percentage
change, in the case of a continuous covariate, or a percentage difference in
the case of a binary covariate.
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