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Introduction

A collection of work

Frees and Valdez (2008), Hierarchical Insurance Claims Modeling,
Journal of the American Statistical Association, Vol. 103, No. 484,
pp. 1457-1469.

Frees, Shi and Valdez (2009), Actuarial Applications of a Hierarchical
Insurance Claims Model, ASTIN Bulletin, Vol. 39, No. 1, pp.
165-197.

Young, Valdez and Kohn (2009), Multivariate Probit Models for
Conditional Claim Types, Insurance: Mathematics and Economics,
Vol. 44, No. 2, pp. 214-228.
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Introduction

Basic data set-up

“Policyholder” i is followed over time t = 1, . . . , 9 years

Unit of analysis “it” – a registered vehicle insured i over time t (year)

Have available: exposure eit and covariates (explanatory variables) xit

covariates often include age, gender, vehicle type, driving history and
so forth

Goal: understand how time t and covariates impact claims Cit.

Statistical methods viewpoint
basic regression set-up - almost every analyst is familiar with:

part of the basic actuarial education curriculum

incorporating cross-sectional and time patterns is the subject of
longitudinal data analysis - a widely available statistical methodology
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Introduction

More complex data set-up

Some variations that might be encountered when examining insurance
company records

For each “it”, could have multiple claims, j = 0, 1, . . . , 5

For each claim Citj , possible to have one or a combination of three
(3) types of losses:

1 losses for injury to a party other than the insured Citj,1 - “injury”;

2 losses for damages to the insured, including injury, property damage,
fire and theft Citj,2 - “own damage”; and

3 losses for property damage to a party other than the insured Citj,3 -
“third party property”.

Distribution for each claim is typically medium to long-tail

The full multivariate claim may not be observed. For example:
Distribution of claims, by claim type observed

Value of M 1 2 3 4 5 6 7 Total
Claim by Combination (C1) (C2) (C3) (C1, C2) (C1, C3) (C2, C3) (C1, C2, C3)
Number 102 17,216 2,899 68 18 3,176 43 23,522

Percentage 0.4 73.2 12.3 0.3 0.1 13.5 0.2 100.0
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Introduction

The hierarchical insurance claims model

Traditional to predict/estimate insurance claims distributions:

Cost of Claims = Frequency × Severity

Joint density of the aggregate loss can be decomposed as:

f(N,M,C) = f(N)× f(M|N)× f(C|N,M)

joint = frequency × conditional claim-type

× conditional severity.

This natural decomposition allows us to investigate/model each
component separately.
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Introduction

Model features

Allows for risk rating factors to be used as explanatory variables that
predict both the frequency and the multivariate severity components.

Helps capture the long-tail nature of the claims distribution through
the GB2 distribution model.

Provides for a “two-part” distribution of losses - when a claim occurs,
not necessary that all possible types of losses are realized.

Allows to capture possible dependencies of claims among the various
types through a t-copula specification.
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Model estimation Data

Data

Model is calibrated with detailed, micro-level automobile insurance
records over nine years [1993 to 2001] of a randomly selected Singapore
insurer.

Information was extracted from the policy and claims files.

Unit of analysis - a registered vehicle insured i over time t (year).

The observable data consist of

number of claims within a year: Nit, for t = 1, . . . , Ti, i = 1, . . . , n
type of claim: Mitj for claim j = 1, . . . , Nit

the loss amount: Citjk for type k = 1, 2, 3
known deductible: dit - applicable only for “own damages”
exposure: eit
vehicle characteristics: described by the vector xit

The data available therefore consist of

{dit, eit,xit, Nit,Mitj , Citjk} .
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Model estimation Data

Risk factor rating system

Insurers adopt “risk factor rating system” in establishing premiums for
motor insurance.

Some risk factors considered:

vehicle characteristics: make/brand/model, engine capacity, year of
make (or age of vehicle), price/value

driver characteristics: age, sex, occupation, driving experience, claim
history

other characteristics: what to be used for (private, corporate,
commercial, hire), type of coverage

The “no claims discount” (NCD) system:

rewards for safe driving

discount upon renewal of policy ranging from 0 to 50%, depending on
the number of years of zero claims.

These risk factors/characteristics help explain the heterogeneity
among the individual policyholders.
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Model estimation Data

Covariates

Year: the calendar year - 1993-2000; treated as continuous variable.

Vehicle Type: automobile (A) or others (O).

Vehicle Age: in years, grouped into 6 categories -

0, 1-2, 3-5, 6-10, 11-15, ≥16.

Vehicle Capacity: in cubic capacity.

Gender: male (M) or female (F).

Age: in years, grouped into 7 categories -

ages ≥21, 22-25, 26-35, 36-45, 46-55, 56-65, ≤66.

The NCD applicable for the calendar year - 0%, 10%, 20%, 30%,
40%, and 50%.
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Model estimation Models of each component

Random effects negative binomial count model

Let λit = eit exp (αλi + x′itβλ) be the conditional mean parameter for
the {it} observational unit, where αλi is a time-constant latent
random variable for heterogeneity.

With λi = (λi1, ..., λiTi)
′, the frequency component likelihood for the

i-th subject is

Li =

∫
Pr (Ni1 = ni1, ..., NiTi = niTi |λi) f (αλi) dαλi

Typically one uses a normal distribution for f (αλi).

The conditional joint distribution for all observations from the i-th
subject is

Pr (Ni1 = ni1, ..., NiTi = niTi |λi) =
Ti∏
t=1

Pr (Nit = nit|λit) .
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Model estimation Models of each component

- continued

Negative binomial distribution model with parameters p and r:

Pr(N = k|r, p) =
(
k + r − 1

r − 1

)
pr(1− p)k.

Here, σ =
1

r
is the dispersion parameter and

p = pit is related to the mean through

1− pit
pit

= λitσ = eit exp(x
′
λ,itβλ)σ.

E.A. Valdez (Mich State Univ) SSC 2014 Annual Meeting 25-28 May 2014 11 / 27



Model estimation Models of each component

Multinomial claim type

Certain characteristics help describe the claims type.

To explain this feature, we use the multinomial logit of the form

Pr(M = m) =
exp(Vm)∑7
s=1 exp(Vs)

,

where Vm = Vit,m = x′M,itβM,m.

For our purposes, the covariates in xM,it do not depend on the
accident number j nor on the claim type m, but we do allow the
parameters to depend on type m.

Such has been proposed in Terza and Wilson (1990).

An alternative model to claim type, multivariate probit, was
considered in:

Young, Valdez and Kohn (2009)
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The severity component Marginals

Severity - Marginals
We are particularly interested in accommodating the long-tail nature
of claims.

We use the generalized beta of the second kind (GB2) for each claim
type with density

f(y) =
exp (α1z)

y|σ|B(α1, α2) [1 + exp(z)]α1+α2
,

where z = (ln y − µ)/σ.

µ is a location, σ is a scale and α1 and α2 are shape parameters.

With four parameters, distribution has great flexibility for fitting
heavy tailed data.

Introduced by McDonald (1984), used in insurance loss modeling by
Cummins et al. (1990).
Many distributions useful for fitting long-tailed distributions can be
written as special or limiting cases of the GB2 distribution; see, for
example, McDonald and Xu (1995).
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The severity component Marginals

GB2 Distribution

Source: Klugman, Panjer and Willmot (2004), p. 72
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The severity component Marginals

GB2 regression

We allow scale and shape parameters to vary by type and thus
consider α1k, α2k and σk for k = 1, 2, 3.

Despite its prominence, there are relatively few applications that use
the GB2 in a regression context:

McDonald and Butler (1990) used the GB2 with regression covariates
to examine the duration of welfare spells.

Beirlant et al. (1998) demonstrated the usefulness of the Burr XII
distribution, a special case of the GB2 with α1 = 1, in regression
applications.

Sun et al. (2008) used the GB2 in a longitudinal data context to
forecast nursing home utilization.

We parameterize the location parameter as µik = x′ikβk:

Thus, βk,j = ∂ ln E (Y | x) /∂xj
Interpret the regression coefficients as proportional changes.
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The severity component Joint distribution

Dependencies among claim types

We use a parametric copula (in particular, the t copula).

Suppressing the {i} subscript, we can express the joint distribution of
claims (c1, c2, c3) as

F(c1, c2, c3) = H (F1(c1),F2(c2),F3(c3)) .

Here, the marginal distribution of Ck is given by Fk(·) and H(·) is the
copula.

Modeling the joint distribution of the simultaneous occurrence of the
claim types, when an accident occurs, provides the unique feature of
our work.

Some references are: Frees and Valdez (1998), Nelsen (1999).
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Calibration Data

Claim losses, by type of claim

Table 3. Summary Statistics of Claim Losses, by Type of Claim
Statistic Third Party Own Damage (C 2) Third Party

Injury (C 1) non-censored all Property (C 3)

Number 231 17,974 20,503 6,136
Mean 12,781.89 2,865.39 2,511.95 2,917.79
Standard Deviation 39,649.14 4,536.18 4,350.46 3,262.06
Median 1,700 1,637.40 1,303.20 1,972.08
Minimum 10 2 0 3
Maximum 336,596 367,183 367,183 56,156.51
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Calibration Data

Density of losses by claim type
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Calibration Data

Quantile-quantile plots for fitting GB2
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Calibration Likelihood

Constructing the severity likelihood

The likelihood depends on the association among claim amounts.

To see this, suppose that all three types of claims are observed (M = 7)
and that each are uncensored.

In this case, the joint density would be

fuc,123 (c1, c2, c3) = h3 (Fit,1 (c1) ,Fit,2 (c2) ,Fit,3 (c3))

3∏
k=1

fit,k (ck) ,

where fit,k is the density associated with the {it} observation and the kth
type of claim and h3(.) is the probability density function for the trivariate
copula.
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Calibration Likelihood

- continued

For claim types M = 1, 3, 5, no censoring is involved and we simply
integrate out the effects of the types not observed.

For example, for M = 1, 3, we have the likelihood contributions to be
L1 (c1) = f1 (c1) and L3 (c3) = f3 (c3), respectively.

For claim type M = 5, there is also no own damage amount, so that the
likelihood contribution is given by

L5 (c1, c3) =

∫ ∞
0

h3 (F1 (c1) ,F2 (z) ,F3 (c3)) f1 (c1) f3 (c3) f2 (z) dz

= h2 (F1 (c1) ,F3 (c3)) f1 (c1) f3 (c3)

= fuc,13 (c1, c3)

where h2 is the density of the bivariate copula.
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Calibration Likelihood

- continued

The cases M = 2, 4, 6, 7 involve own damage claims and so we need to
allow for the possibility of censoring.

Let c∗2 be the unobserved loss and c2 = max (0, c∗2 − d) be the observed
claim. Further define

δ =

{
1 if c∗2 ≤ d
0 otherwise

to be a binary variable that indicates censoring. Thus, the familiar M = 2
case is given by

L2 (c2) =

{
f2 (c2 + d) / (1− F2 (d)) if δ = 0
F2 (d) if δ = 1

=

[
f2 (c2 + d)

1− F2 (d)

]1−δ
(F2 (d))

δ
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Calibration Likelihood

- continued

For the M = 6 case, we have

L6 (c2, c3) =

[
fuc,23 (c2 + d, c3)

1− F2 (d)

]1−δ
(Hc,23 (d, c3))

δ

where

Hc,23 (d, c3) =

∫ d

0
h2 (F2 (z) ,F3 (c3)) f3 (c3) f2 (z) dz.

It is not difficult to show that this can also be expressed as

Hc,23 (d, c3) = f3 (c3)H2 (F2 (d) ,F3 (c3)) .

The M = 4 case follows in the same fashion, reversing the roles of types 1
and 3.
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Calibration Likelihood

- continued

Finally, the more complex M = 7 case is given by

L7 (c1, c2, c3) =

[
fuc,123 (c1, c2 + d, c3)

1− F2 (d)

]1−δ
(Hc,123 (c1, d, c3))

δ

and

Hc,123 (c1, d, c3) =

∫ d

0
h3 (F1 (c1) ,F2 (z) ,F3 (c3)) f1 (c1) f3 (c3) f2 (z) dz.

With these definitions, the total severity log-likelihood for each

observational unit is

log (LS) =

7∑
j=1

I (M = j) log (Lj) .
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Calibration Estimated models

The fitted conditional severity models
Table 11. Fitted Copula Model

Type of Copula
Parameter Independence Normal copula t-copula

Third Party Injury

σ1 1.316 (0.124) 1.320 (0.138) 1.320 (0.120)
α11 2.188 (1.482) 2.227 (1.671) 2.239 (1.447)
α12 500.069 (455.832) 500.068 (408.440) 500.054 (396.655)
βC,1,1 (intercept) 18.430 (2.139) 18.509 (4.684) 18.543 (4.713)

Own Damage

σ2 1.305 (0.031) 1.301 (0.022) 1.302 (0.029)
α21 5.658 (1.123) 5.507 (0.783) 5.532 (0.992)
α22 163.605 (42.021) 163.699 (22.404) 170.382 (59.648)
βC,2,1 (intercept) 10.037 (1.009) 9.976 (0.576) 10.106 (1.315)
βC,2,2 (VehAge2) 0.090 (0.025) 0.091 (0.025) 0.091 (0.025)
βC,2,3 (Year1996) 0.269 (0.035) 0.274 (0.035) 0.274 (0.035)
βC,2,4 (Age2) 0.107 (0.032) 0.125 (0.032) 0.125 (0.032)
βC,2,5 (Age3) 0.225 (0.064) 0.247 (0.064) 0.247 (0.064)

Third Party Property

σ3 0.846 (0.032) 0.853 (0.031) 0.853 (0.031)
α31 0.597 (0.111) 0.544 (0.101) 0.544 (0.101)
α32 1.381 (0.372) 1.534 (0.402) 1.534 (0.401)
βC,3,1 (intercept) 1.332 (0.136) 1.333 (0.140) 1.333 (0.139)
βC,3,2 (VehAge2) -0.098 (0.043) -0.091 (0.042) -0.091 (0.042)
βC,3,3 (Year1) 0.045 (0.011) 0.038 (0.011) 0.038 (0.011)

Copula

ρ12 - 0.018 (0.115) 0.018 (0.115)
ρ13 - -0.066 (0.112) -0.066 (0.111)
ρ23 - 0.259 (0.024) 0.259 (0.024)
r - - 193.055 (140.648)

Model Fit Statistics
log-likelihood -31,006.505 -30,955.351 -30,955.281
number of parms 18 21 22
AIC 62,049.010 61,952.702 61,954.562

Note: Standard errors are in parenthesis.
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Extensions

Some recent follow-up work

“Multivariate aggregate loss model” by Ren (IME, 2012) and “Recursions
and fast Fourier transforms for a new bivariate aggregate claims model” by
Jin and Ren (SAJ, 2013)

claims arrive according to Marked Markovian arrival process (MMAP)

also allows for dependencies between claim frequency and severity

can get explicit forms of the aggregate loss distribution, under certain
assumptions

numerical methods to solve e.g. use of fast Fourier/Laplace
transforms
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Conclusion

Concluding remarks

Model features

Allows for covariates for the frequency, type and severity components

Captures the long-tail nature of severity through the GB2.

Provides for a “two-part” distribution of losses - when a claim occurs,
not necessary that all possible types of losses are realized.

Allows for possible dependencies among claims through a copula

Allows for heterogeneity from the longitudinal nature of policyholders
(not claims)

Other applications

Types of accidents, traffic violations, claims at-fault and no-fault

Could examine health care expenditure

Compare companies’ performance using multilevel, intercompany
experience
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