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Abstract. Given a numbet. > 1, a weakly L-quasiregular map on a do-
main{?2in spaceR™ is a map. in a Sobolev spadé/lf)f((); R") that satisfies
|Du(z)|™ < Ldet Du(x) almost everywhere if2. In this paper, we study
the problem concerning linear boundary values of wedklguasiregular
mappings in spacR”™ with dimensionn > 3. It turns out this problem de-
pends on the powerof the underlying Sobolev space. Farot too far below

the dimensiom we show that a weakly quasiregular magin?(£2; R")
canonly assume a quasiregular linear boundary value; however, fopall
andl < p < L”—Jfl we prove a rather surprising existence result that every
linear map can be the boundary value of a weakiguasiregular map in

WhP(02; R"™).
Mathematics Subject Classification (19®0C65, 30C70, 35F30, 49J30

1. Introduction

In this paper, we use some techniques recently discovered in study of vec-
torial Hamilton-Jacobi equations in the calculus of variations to investigate
the problem concerning the linear boundary values of weakly quasiregular
mappings on a Lipschitz domainin spaceR™ with dimension: > 3. The

main results of the paper have been recently announced in Yan [28].

We recall that (seeg.g, Astala [2], Iwaniec [11], Iwaniec and Martin
[14]) a mapwu from a domains? in R™ to R" is said to beweakly L-
quasiregular L > 1 being a constant called the (outeli)atation of v, if
it belongs to a (local) Sobolev spa&z’éli’f((z; R") for somep > 1 and
satisfies
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(1.1) |Du(z)|™ < Ldet Du(x)

for almost everyz € 2, where Du = (9u’/dz;) denotes the gradient
matrix ofu and|¢| denotes the matrix norm defined |§y = max |, |{h].
Note that the class of weakly quasiregular mappings in the standard space
W,ﬁ):((z R"™) becomes the class of usual quasiregular mappingse(see
Rickman [24]) and also coincides with the class of mappings with bounded
distortion (see Reshetnyak [23]). Weakly 1-quasiregular maps will be called
theweakly conformaimaps. Clearly, a weakly conformal map is weakly
quasiregular for allL > 1.

In order to study the weakl-quasiregular mappings in the framework
of vectorial Hamilton-Jacobi equations in the calculus of variations, we
consider thel-quasiregular setslefined by (for any. > 1)

(1.2) K ={&eM™"||£" < Ldet&},

whereM™*™ denotes the real x n matrices with norm¢| defined above.
WhenL = 1, the setK; will be called theconformal setA mapu €
W, ’p(Q R") is then weaklyL-quasiregular if and only if it satisfies the

loc

special Hamilton-Jacobi equation
Du(z) € K1, a.e. x € (2.

Closely related to the séf; is an important functiod’;, onM"™*" defined

by
(1.3) Fr(§) = max{0, [§]" — Ldet &}

On one hand, this function characterizes completely the class of weakly
L-quasiregular mappings as mappinnggﬁ’(Q; R") that satisfy

Fr(Du(z)) =0 a.e. x € 2

on the other hand, functiohy, satisfies an important condition giasicon-
vexityintroduced in Morrey [16] in the calculus of variations (see also Ball
[3], Ball and Murat [5], Dacorogna [7], Morrey [17]); namelk;, satisfies

F©) < 17 [ Fule+ Do) da
(1.4) Ve M”X”, ¢ € C°(2:R™).

As an easy consequence of property (1.4), one easily shows that if a
weakly L-quasiregular map in W (£2; R") assumes an affine boundary
valueu|s, = £x + b then one must havee K.

One of the main results of this paper is to show this result is also valid for
weakly L-quasiregular mappings 17 (£2; R") if p is not too far below
the dimensiom. We prove the following theorem.
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Theorem 1.1.For eachL > 1 there exists an index = p, (L) < n such
that if a weaklyL-quasiregular map: in W1P(£2; R") assumes an affine
boundary value:|s, = £z + bthen{ € K.

Note that by our later existence theorem (see Theorem 1.3) and a recent
significant conjecture of lwaniec [12] the optimal numbg(L) would be
given byp, (L) = Lnfl foralln > 3 andL > 1. This can be shown to be
the case ifL = 1 andn is even; we have the following sharper result.

Theorem 1.2.Let dimensiom > 4 be even. Suppose a weakly conformal
mapu in Wh/2(2; R™) assumes an affine boundary valdg, = £z +b.
Then¢ € Ky andu = &x + ba.e. inf2.

The proof of Theorem 1.1 and 1.2 relies on the existence of certain
guasiconveXunctions vanishing exactly on the skY,. The existence of
such quasiconvex functions has been establishedjiiemévelék and Yan
[20], and Yan and Zhou [29], following important work of lwaniec [11],
Iwaniec and Sbordone [15] and Iwaniec and Martin [14].

The situation of linear boundary value problem may be completely dif-
ferent for weakly quasiregular mappings in Sobolev spateg (2; R")
for powerp not too close to the dimension We prove the following main
existence result.

Theorem 1.3.Letn > 3, L > 1andl <p < L”—fl Then given any affine
mapéz + b there exists a weaklj-quasiregular map: in WhP(2; R™)
such thatu|spn = {x + b.

This result includes a completely new result even for weakly conformal
mappings iNR"™ for all dimensions: > 3. We have the following special
case of Theorem 1.3, which implies that for even dimensiotise power
n/2 is optimal for the conclusion of Theorem 1.2.

Corollary 1.4. Letn > 3. Then every affine map can be the boundary value
of a weakly conformal map i/1?(2; R") for any1 < p < n/2.

More general boundary data can be considered for weakly quasiregular
mappings. Throughout this paper, we say a pap W7 (£2; R") is piece-
wise affinaf there exist at most countably many disjoint open subsits
of {2 whose union has full measure such that eaih, is affine. We shalll
prove the following stronger version of Theorem 1.3.

Theorem 1.5.Letn > 3, L > 1 and1 < p < {4 Then, for any piece-
wise affine map € WhHP(£2; R") ande > 0, there exists a weakly.-
quasiregular mapi, € ¢ + W, ?(£2; R™) such that|u, — ollLeo) < e



298 B. Yan

The proof of Theorem 1.3 relies on some important ideas derived from
new investigations of Gromov’s method of convex integration (see Gromov
[10]). Such investigations have been initiated and successfully applied to the
existence study of vectorial Hamilton-Jacobi equations of the forrfr) €
K by Muller andSveik [18], [19]; a similar method has been recently
applied to the vectorial Hamilton-Jacobi equations of more general form
L(z,u(x), Du(z)) = 0 by Muller and Sychev [21]. A different approach to
the existence study for vectorial Hamilton-Jacobi equations uses the Baire
category method and has been pursued by Dacorogna and Marcellini [8],
[9].

In this paper, we establish a general existence theorem (Theorem 3.2) on
the Hamilton-Jacobi equatiabu(x) € K with affine boundary conditions
for a given sef{ which may be unbounded, a case not covered by the general
study in papers [8], [9], [18], [19], [21] mentioned above. Our existence
theorem is given in a form that is sufficient for the proof of Theorems
1.3 and 1.5; some generalization can be established to cover more general
Hamilton-Jacobi equations but will not be included in the present paper.

Notation and Preliminaries

Before we proceed to prove the main theorems in following sections, we
explain some notation and preliminaries.

Letm,n > 1 be integers. We uskeI™*™ to denote the space of all real
m x n matrices with the operator norf§| = max,—; [h|. We use rank
to denote the rank of matrik

Givena € R™, b € R", leta ® b be the rank-one matrix with elements
(a®b);; = a'V’. If m = n, we uselet £ to denote the determinant of square
matrix ¢ and also usé = diag(di, - - -, dy,) to denote the diagonal matrix
D e M™*"™ with d;; = d; anddij =0fori 7& 7-

We shall always assuni@ is a bounded open domain R"™ with Lips-
chitz boundanp{2. For any measurable sétin R we use|E| to denote
its Lebesgue measure. We also #sentE, convE andy g to denote, re-
spectively, closure, interior, closed convex hull and characteristic function
of any given sef.

Forl < p < oo, let WP(§2; R™) be the usual Sobolev space of map-
pings fromf2 to R™ with norm (see [1], [17])

[ullwrr = llullze + [[Dul| s,

where Du = (9u'/dz;),i = 1,---,m, j = 1,---,n, is the gradient
matrix of u. Let W,”(£2; R™) be the local Sobolev space. Note that for
any Lipschitz domain2 one can identify the spad& >°(£2; R™) with the
space of all Lipschitz continuous mappings fréio R™. We also denote
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by ng”((z; R™) the completion o€5°(£2; R™), the set of all smooth maps
with compact support it2, in WP (§2; R™) under the norm defined above.
Two mapsu, v in W1P(£2; R™) are said to have the same boundary
value and writeu|po = v|pp Oru € v + W[)l’p(Q;Rm) provided that
u—ve Wol’p(Q; R™).
Finally, we state a simple result frequently used throughout the paper;
the proof is elementary and is left to the interested reader.

Lemma 1.6.Let {(2;} be a set of at most countably many disjoint open
subsets of2. Letu € WHP(2; R™) andu; € WP(£2;; R™) satisfy that
ujlon; = ulog; for each index. Suppose ||y, < 00 if p < 0o or
sup; [|uj[[wi. < oo if p = co. Thenthe mag = xo\u;0,u + >, X, uj
belongs tau + W, 7 (2; R™).

2. Quasiconvex functions vanishing on quasiregular sets

In this section, we aim to prove Theorems 1.1 and 1.2.
Let F: M™*™ — R be a function. According to Morrey [16F is said
to bequasiconvexon M™*"™ provided the property

1
(2.1) FO < 57 /D F(¢+ Do(x)) da

holds for all¢ € M™*", bounded domain® C R", and all smooth maps
¢ € Cg°(D;R™). Given any functionf: M™*" — R, we define the
guasiconvexificatioof f, denoted byf?, to be the function given by

1
2.2 °g) = inf / + Dy(x)) dx.
@2 rO= it [ fE+De)
It is well-known that the functiorf?¢ is independent of the domain and is
always quasiconvex assumirigs continuous; see.g, [3], [7], [16], [17].
If F:M™ ™ — R is quasiconvex function and satisfies

(2.3) (POl <C(gP+1) §eM™,

whereC > 0, p > 1 are some constants, we observe that, by a density
argument (see.g. [5], [7], [17]), property (2.1) also holds for allp €
Wol’p(D; R™). From this observation, we easily have the following result.

Proposition 2.1.Let F: M"™*" — R be quasiconvex and satis{g.3).
Supposeék C M™*" is a set such that'|x = 0. If u € WLHP(2; R™)
satisfiesi|p, = {x+bandF (Du(z)) = 0a.e.inf2,thenonehad'(§) < 0.
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We now consider thé&-quasiregular sek’;, ¢ M™*" defined above by
(1.2). As defined by (1.3), lefi,: M™*™ — R be the function given by

Fr(&) = max{0, [£|" — Ldet&}.

Then, by (1.4),F7, is quasiconvex and one easily sees thatvanishes
exactly onK; note also that the growth af, is of n-th power:0 <
Fr(¢) < Clel.

Another important property of this functiaFy, is that it easily satisfies
the so-called.”-mean coercivitondition (seee.g, [13], [30]):

(2.9) /D F(Dp(x)) du > /D Dy(x)["dz ¥ o € C°(D; R™).

Existence of the quasiconvex functions with growth below the natural
powern and vanishing exactly on the quasiregular set is the main content of
our next theorem; we refer to [20], [30] for the proof and further discussions.

Theorem 2.2 ([20], [30]).Letn > 3. Then for everyl. > 1 there exists a
powerp, (L) € [n/2,n) such that for eacr > p, (L) one can always have
a quasiconvex function satisfying

(2.5) 0<g(&) <[, 9(§) =0+ (e K.
Furthermore, ifn is even and. = 1, the optimal powep,, (1) equalsn/2.

Remark.1) Existence of quasiconvex functions satisfying (2.5) follows from
property (2.4) and general results established in Yan and Zhou [30] using
the important technique afonlinear Hodge decompositiatiscovered in
Iwaniec [11] and Iwaniec and Sbordone [15]. In fact, by [30], Theorem
2.1, one can choosgto be the quasiconvexification functic@ﬁi’/n)qc for

p > pa(L).

2) The special case whenis even andl = 1 has been considered
by Miiller, Svek and Yan in [20], using a special linear structure of the
conformal set; and following the important work of Iwaniec and Martin
[14].

3) In view of some recent results in lwaniec [12] (see also Astala [2]),
we conjecture that the optimal powgy, (L) in the theorem is given by

pn(L) = L”—Jflforallnz 3,L>1.

Proof of Theorem 1.1

Let p,(L) < n be the number determined in Theorem 2.2 andylée

the function satisfying (2.5) withh = p,,(L). Assumeu is a weakly L-

quasiregular map gz + b + Wol’p((z;R”), wherep = p,(L). Since
g(Du(x)) = 0 a.e. in{2, by Proposition 2.1, one hag¢) < 0 and hence
¢ € Ky, as claimed. This completes the proof.
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Proof of Theorem 1.2

Letn > 4 be even, and let € W'™/2(£2;R") be a weakly conformal
map andu|gp, = {x + b. As in the proof of Theorem 1.1 it follows from
Proposition 2.1 and Theorem 2.2 that K. Thereforethe map = you+
Xr\ 0 ({7 +b) is aweakly conformal map iWﬁJ’C"/2 (R™;R™). By awell-
known result of lwaniec and Martin [14§, must belong tdV,." (R™; R™).

Then a classical result of Liouville’s theorem (see Reshetnyak [23]) shows
% is a Mobius transformation; hencé,= &z + b. The proof of Theorem

1.2 is now completed.

3. A general existence theorem

In this section we establish an existence theorem for vectorial Hamilton-
Jacobi equation of the form

Du(z) € K, a.e.x € {2,

whereK is a given subset d™*". In studying equations of this type, it
is important to investigate certain special structures of théset

Definition 3.1. Given any set’ ¢ M™*", define set;(K) for j =
0,1,2,---inductively as followsZy(K) = K and, forj = 0,1, - -,

Li1(K)=A{t&+ (1 —t)n|t €0, 1], §&n € L;(K), rank(§ —n) < 1}.
Define the lamination hull of sét” to be the set given by
(3.1) LK) =U;Z0Li(K).

Remark. Clearly, from the definition;1(K) = £1(£;(K)) 2 L;(K)
forallj =0,1,---. We refertoe.g, [4], [7], [8], [9], [18], [19], [22], [29],

[30], [31] for more properties of this and other generalized convex hulls in
the calculus of variations.

Definition 3.2. For eachl < p < oo, definef,(K) to be the set of all
matrices¢ in M™*" such that there exists a map= ue € Wr(2;R™)
satisfying

(3.2) Du(z) e K ae.x €2, ulpn=~x.

Remark.1) If £ € K, we can always choose = {x; henceK C 3,(K).
Clearly, we always havg,(K) C §,(K) foranyl < g < p < oo.

2) The following result shows that the s@§(K) is independent of the
domain{? and that the map € {x + Wg’p((z; R™) can be chosen in such
away that|lu — {z|1» () is arbitrarily small.
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Lemma3.1.Let¢ € §,(K) and letug be the map in the definition above.
Then, for any bounded open sgtin R™ and anye > 0, there exists a map
v(y) € &y + Wy P(Z; R™) such that|v — €y| 1s(s) < € and

1 1
5 /2 o(Dely))dy = gy /Q g(Due(x)) dz

for any continuous functiop with |g(n)| < C(|nP + 1).

Proof. Without loss of generality, assurfiec (2. Fixanumbep > 0. Since
Y is open, for any € X, there exists, betweer) andj such that the sets
2, =y + €2 are contained iz for all 0 < e < ¢,. Note that all such
sets{(2, .} form a Vitali cover ofX’; hence, by the Vitali covering lemma,
there exist disjoint setSyk + €x82} and a nuII sefV suchthal) < ¢, < §
andX = Uy (yx + €,2) U N. Definev = v9: ¥ — R™ by

W (y) = €y + exug (Y2 if y € yi + e, 2 for somek,
&y otherwise inX.

Then it is easy to see that(y) € ¢y + Wol’p(E; R™). Easy computation
also shows that

5 o= g | aDucto)) e

for any continuous functiogwith |g(n)| < C(|n|P+1). Finally, by choosing
§ > 0 sufficiently small, one can maKe’ — £yl|n(s) < €.

We now state our main existence theorem of this section.
Theorem 3.2.Let K’ ¢ M™*" be a closed set and let C ,(K) be a set
satisfying

1
(3.3) cop = sup / | Dug|? dx < oo,
gea 112] Jo

whereug, € WP(02; R™) is some map satisfying.2). Suppose the lami-
nation hull B = L(A) is open and bounded. ThéhC g,(K).

From this theorem, we easily have the following result; we referititid
andSveiak [18] for similar results about open relations and to Gromov [10]
and Miller and Sychev[21] for other related results.

Corollary 3.3. Let A C M™*" be a bounded set such thafA) is open.
ThenlL(A) C Bx(A).

Proof. The result follows easily from the theorem with = A.
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The following result is essential for proving our general existence the-
orem. Other versions of the result can be found in [8], [9], [18], [19] and
[21]; a similar result in the case = 1 has been used by Cellina in [6].

Lemma 3.4.Let U be an open set itM™*"™ and letn € U andn =
tm + (1 —t)ne witht € (0,1) and ranKrn; — 72) = 1. Then, for any > 0,
there exist piece-wise affine mage nx + Wol’OO (£2; R™) and finitely many
pointsns, - - -, ns iIn U suchthatDu(x) € {n1, 12, n3,---,ns} a.e.in2and
the measure of the sét € 2| Du(x) # m, Du(x) # 12} is less thare.

Proof. The proof follows closely some ideas in [6], [21]. We proceed in
several steps.

1. Letn; = 2 + a ® b, wherea € R™, b € R" and|b| = 1. Then
m-—-n=a®b,n—n=a® by, whereb; = (1 — t)b, by = —tb.
Sincen € U andU is open, we can choosg, - - -, bs in R™ such that
n, =n+a®b; € Uforall j = 3,---,s, eachb; is extreme point of
the convex hullH = con{by, bs, - - -, bs}, and0 € intH. Note that we can
chooses = n + 2.

2.Foreachk = 1,2,---,let{b%, --- b} be a set of points contained in
intH such thafb¥ — b1| < 1/k and0 € intconv{by, by, b5, - - -, b} for all
k. For simplicity, we also writé; = b¥ fori = 1,2 andk = 1,2, - - -.

3. Foreach givelk = 1,2, - - -, consider the function
- _ k. n
(3.4) wi(z) = -1+ 121?%{3 bj -z, ze€R"

It is clear thatw, is piece-wise affine, Lipschitz continuous &i* and
satisfiesDwy, € {b1,b2,b%,---,b%} a.e. inR™. From the fact thad ¢
intconv{b¥, --- b}, the sety = {z € R"|wi(x) < 0} is a bounded
open polyhedral convex set containiigand wy|ss = 0 (seee.g.[25]).
Therefore, we have proved that there exist a Lipschitz bounded damain
in R™ and a piece-wise affine function = w;, € W&’“(Z) such that
Dw € {by, by, bk, --- b} ae.iny.

4. A similar argument using the Vitali covering lemma as the one used in
the proof of Lemma 3.1 shows that there exists a piece-wise affine function
hi € Wy ™°(2) with Dhy € {by, by, bk, - b5} a.e. inf2. Note that it
is important here that we allow our piece-wise affine maps to be affine

on countably many sets. For eagh= 1,2,---,s, define()éfC = {z €
2| Dhy,(x) = bk}
5. We modify the values ok, on the set2” for eachj = 3,---,s

so that the gradients belong to the $&t, b, - - -, bs}. To do this, letj €
{3,---,s} be given, and lef2} = >"°° | X% be such thaby| s« is affine
Jv

andDhy|s. = bk forall v = 1,---. Sinceb? € intcon{by, b, - - -, bs},
Jv
we have) € intconv{b; — b%, - - -, by — b%}. As in Steps 3 and 4, we have a



304 B. Yan

piece-wise affine Lipschitz functiof, e W, > (£%) such thatDh,, (z) €
{b1 = b5, by —bF,- - by —bE} ae.iny Deflnev =hi+> 00 1X2kh

Entﬁj’?. Thenvk € hy, + Wy > (£25) ande] € {b,bo,---,bs} ae. m()f.
e

Gl ={x € Q| Dvi(z) =b;}, o =|Gl|/|2F].

Sincevt € hy, + W&’“(Qj’?), we easily see thatforall = 1,2, - -

S S
(3.5) B=> ofbi, Y ofi=
=1 =1
Note that, for anyj > 3, b;? — by ask — oo and, by the assumption of our
selectionp; is an extreme point of coR¥;, by, - - -, bs}. We easily obtain

from (3.5) that for eachi = 3, - -, s

(3.6) lim o =0, Vi=2.3, --,s

k—oo

6. Definefy = xoruoy e +>25-3 X0 vk ong2. Then, f;. is piece-wise

affine and belongs tWOLOO(Q), andone ha® fy(x) € {b1,b2,---,bs} a.e.

in £2. Note that, forany = 3,-- -, s, the sef{z € 2| D fi.(z) = b;} equals
(up to a set of measure zeto)_ 3ny» where sets?k are defined in Step 5.
Hence, by (3.6), we have

klirn {z € 2|Dfe(x) =bi} =0 Vi>3.
—00

This proves the measure of the dat € 2| D fi(z) ¢ {b1,b2}} tends
to zero ask — oo. We choose a largé such that{z € 2|Dfi(z) ¢

{b1,b2}}| < e.

7. Finally, letu(x) = nz + fi(z) a for x € 2. We easily see that is a
piece-wise affine map and satisfies all the requirements of the lemma. This
completes the proof.

Proposition 3.5.Let B = L(A) be an open set iVI"™*". Then for any €
B ande > 0, there exist a piece-wise affine mape {x + Wol’oo(!?; R™)
and two sets of finitely many pointa;, as, - - -, -} C Aand{&, &2, - -,
&} C B such that

Du(z) € {a1, -, a0, U{&, -+, &), ae xz€2

and the measurz € 2| Du(z) ¢ {a1, 00, -, o, }}| < €.
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Proof. Given{ € B = L(A), we havel € Li(A) C B, wherek is
the minimal such index. Theg = tn; + (1 — t)n, for somet € (0,1)
andni,n2 € Li_1(A) with rank(n; — n2) = 1. Since B is open and
¢ € B,byLemma 3.1, we have amap € {x + WOLOO(Q; R™) and a set
{n3,---,ms} C Bsuchthat

{z € 2| Dur(z) & {m.m}} <e <e

If £ =1, the resultis proved since then, 7, € A. If k£ > 2, we can apply
similar arguments to eaafy € £;,_1(A) C B and to each component of

the set?; = {z € 2| Duy(x) = n;} whereu, is affine to adjust the value
Duy(x) = njtovaluesinthe sef;,_5(A) formostx € 2;, wherej = 1, 2.
Repeating this argument in a finite number of steps, one can eventually reach
at the conclusion of the proposition.

Assume nowA C (3, (K) satisfies (3.3) an® = L(A) is open.

Let¢ € B and letu be a map determined in the previous proposition.
Let X = {z € | Du(z) € A} = U2, X}, whereu|s, = a;;x + d;
is affine for somel < i(j) < r. By Lemma 3.1 and condition (3.3), there
existsv; € u + Wy"(X;; R™) such thatDv;(z) € K a.e. inX; and
ij |Dv;|P dx < co | 2.

Letd = xo\su + 2272 Xz;v;- Thend € {x + ngf’((z; R™) and
satisfies

(3.7) Diu(z) e KU{&, -, )
(3.8) Q. ={x e 2| Du(x) € {&,---, &}
(3.9) 12| < &

(3.10) fQ\Qé |DafP dx < co |82\ £2¢|.

Proof of Theorem 3.2

The proof is based on the previous construction and the boundedness as-
sumption onB = L(A). We assume, for a constaht< oo, |n| < A for all
€ B.

! Let¢ € B be given. We use the construction described above. Note that,
in addition to (3.7)—(3.10), it also follows thdf, [Da|? dz < AP [£2].

In the following, lete, — 0T be a decreasing sequence satisfying
Dk e,lc/p < 0.

Letwu; € &x + Wol’p(Q; R™) be the functionz defined above with
e = €¢;. We modify the values ofi; on each open set wheBu, ¢ K.
Let 21 = (2. be the set defined in the construction. Write = U;";lAj
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such thatu; |4, = &= + d; and{; € B. For eachj, we use the previous
construction fog; € B with domainA; and numbet = ¢,/27 to obtain a
mapd; € uy + W, ?(A;; R™) such that

(3.11) Dirj(x) € KU{&),.&,}:
(3.12) AL ={z € 4;| Doj(z) € {&, . &t h
(3.13) |A;\ < €/27;

(314) fAj\A;. ’Df)j’p da: S Co |AJ \ A;’

Let() = U;').;IA;" Then\!b[ < €9. Defineuy = X2\ 2, U1 +Z]O'il XA].@]'.
Thenuy € £z 4 W, P (2; R™) satisfies thatiy = u; on2\ 2, Duy(z) €
B a.e. inf2y, Dus(z) € K for a.e.inf2\ 2, andel\(22 | Dug P dz <
Co ‘_Ql \ QQ‘.

We then modify the values af; on the set2; as we did foru; on 24
to obtainus and{2;. Continuing in this way, we obtain a sequereg. } in
Ex + WOI’p(Q; R™) and open set&;, C 2,1 C {2 such that

(3.15) 2] < s

(3.16) Duy(x) € B a.e.inf;

(3.17) Duy(z) € K a.e.inf2\ 2;
(318) Uk+1 = U 0N g \ ;

(3.19) Jonoe ., Pral? do < co [\ Q.

First of all, note that conditions (3.16), (3.19) yield

/ Dugir P d < o2\ Qesa| + N |2s1] < Co |24,

2

whereC\ = max{cp, \?}. Hence, by (3.18),

|Dug1 — Dug| () = [ Duk+1 — Dug||pr(0,)

(3.20) <207 |7,
Furthermore, by (3.15)—(3.19), we easily obtain that

(3.21) Jo | DugsalP dx < Co |92];

(322) fQ dISlp(Duk(:c),K) dr < C/’_Qk’ < €k,

whereC" is a constant and disf; K) is the distance function to the skt
Finally, conditions (3.20), (3.21) and the convergenc&fe}g/p imply

that the sequencguy } is a Cauchy sequence §x + Wol’p((z; R™). Let

u € x+ Wol’p((z; R™) be the limit of this sequence. Siné¢ is closed,
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condition (3.22) impliedu(z) € K for almost everyr € (2. This proves

€ € Bp(K); henceB C ,(K).
The proof of Theorem 3.2 is now completed.

Remark. From (3.21) in the proof above we easily see that the solution
uelr+ Wol’p((z; R™) obtained in the proof also satisfies

1

(3.23) T

/ |DulP dz < Cy = max{co, sup [n["}.
0 neB

4. Linear boundary values of weakly quasiregular mappings

In this section, we prove main results Theorems 1.3 and 1.5.

To apply the general existence theorem proved before, we introduce some
notations.

Given a numbeh > 0, define

(4.1) R(n) ={{ € M| [¢|" = |det [}
(4.2) Ax={¢ e R(n)|[§] <Ak
(4.3) By ={{e MV [[§] <Ak
(4.4) SO(n) = {€ € R(n)| det& = 1}.

It is easy to see that the conformal $&t = {£ € R(n)| det£ > 0}.
We have the following result.

Proposition 4.1.£,,_1(A)) = B,. ThereforeB) = L(A)) is an open set.

Proof. The proof follows from a refinement of the argument in Yan [27].
Since Ay, C B, and B, is convex and hencé&(A,) C B,, it suffices

to showB, C L£,_1(Ay). Let & € By, £ # 0. By singular value de-
compositions of matrices, there exi§%, Q2 € SO(n) such thatf =
Qidiag(o1, - -, 0p) Q2, Where|oy| < --- < |oy|, 0, # 0 and|o,| < A
Let Ry = 0,(Q2; then

(4.5) § = Qrdiag(er, - -, €p-1,1) Ro,
wheree; = 2t € [-1,1]fori=1,---,n—1.Let, forj=0,1,--- ,n—1,

Sj={diag(e1, -, en) | |&| <L, Vi>1; |e| =1, VE > j+1; €, = 1}.
(4.6)

Note that any) = diag(e1, - - -, €,) € S; can be written ag = tn™ + (1 —
t)n~ witht = (1+¢;)/2 € [0, 1] and

:': .
n :d|aq€1,'",€j_1,:|31,6j+1,"',€n) ESj—l;
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clearly, rankn™ —n~) = 1. Hence,S; C £4(S;j—1)forj =1,2,--- ,n—1.
This provesS,,—1 C £,-1(So). Finally, by (4.5), we have

§€Q1S-1R2 CQ1Lp1(80) R2 € L 1(Q1 .80 R2) € Ln—1(Ay).
ThereforeB) C £,,—1(A)); the proof is completed

Proposition 4.2.Letn > 3,L > 1andl < p < L+1’ and letB be the open
unitballinR™. Then forany. € R(n) there exists a weakly-quasiregular
mapug € £ + Wol’p(B' R") such that

| Dugl” dz < C'[¢]P,

w1 P

whereC'is a constant depending only en L andp.

Proof. Let ¢ € R(n) be given. If¢ € K; we chooseus = {x. Assume

¢ € R(n) \ K. Define

4.7) ue(x) = s L+l

= d=—V 0.
’,:L'|6’ L Y x 7&

Sincel <p< L+17 an elementary computation shows thate Whr(B;
R"), Du¢(x) € Kr, (infactDug(x) € 0Kp)forallz # 0andug|op = fx
Furthermore, using the formul®u (z)| = |x|~°|¢|, one easily has

‘B|/ Dugl? d < s JEIP.

This completes the proof. Finally let us notice that the mapsve have
used in the proof also satistyu, (z) € K1 U 0K, for a.e.x € B.

Proof of Theorem 1.3

Let ¢ € M™ " be given. We assumg =+ 0. Let A = 2|¢|. Then¢ € B,.
From Proposition 4.1£(A,) = B, is open and bounded; one also has
sup,ep, NP < C1[¢[P. Also, from Proposition 4.2, the set = A, C
Bp(K,) satisfies the condition (3.3) in Theorem 3.2 with consiant<
C5 |£|P. Therefore, Theorem 3.2 impligse 5,(K,). This proves the the-
orem.

Using Lemma 3.1 and the remark following the proof of Theorem 3.2,
we easily obtain the following result from Theorem 1.3.

Corollary 4.3. Letn > 3, L > 1and1 < p < 4. Then, for any¢ €

M™»*" b € R™ ande > 0, there exists a weakly.-quasiregular map
ue € £ + b+ WyP(2; R") satisfying
@8) [ 1Dulde < CaleP 121, e o~ i) <

where(Cs is a constant depending only eanandp.
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Proof of Theorem 1.5

Letn >3,L > 1landl < p < {25 Lety € W'?(£2;R") be a piece-wise
affine map. Let? = U2, 2; UN, |[N| = 0, be such thap|o, = &z + b;
is affine for allj > 1. The conditionp € W?(£2; R"™) implies
(4.9) D 1171925 < oo
j=1
We apply Corollary 4.3 to ead), b; ands2; and obtain weakly.-quasireg-
ular mapsu; € ¢ + Wol’p(Qj; R") satisfying
€

J,, 1P e < Colei 1651 g~ Pl < 5
Then itis easily seen that the map= 3" x,u; belongs tap + W, P (£2;
R™), is weakly L-quasiregular and satisfigis, — ¢|| () < €. The proof
is completed.

Finally, from the previous proofs and the note in the proof of Proposition
4.2, we easily obtain the following slightly stronger result.

Theorem4.4.Letn > 3, L > 1andl <p < L”—fl Then, for any piece-
wise affine mag € WlP(2;R") ande > 0, there exists a map, €
©+ Wol’p((z; R") such thatDu.(x) € K; UJKy, a.e.inf2 and |lu. —
ollr(o) <€

Remark.We don’t know whether the sét; U 0K, in this theorem can be
replaced simply by K.
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