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STABILITY OF WEAKLY ALMOST CONFORMAL MAPPINGS

BAISHENG YAN AND ZHENGFANG ZHOU

(Communicated by Albert Baernstein II)

Abstract. We prove a stability of weakly almost conformal mappings in
W 1,p(Ω;Rn) for p not too far below the dimension n by studying the W 1,p-
quasiconvex hull of the set Cn of conformal matrices. The study is based
on coercivity estimates from the nonlinear Hodge decompositions and reverse
Hölder inequalities from the Ekeland variational principle.

1. Introduction and main results

Let Mn×n be the set of all real n × n matrices. Let X : Y = tr (XT Y ) and
|X |2 = X : X for X, Y ∈ Mn×n, where AT and trA denote the transpose and the
trace of A, respectively. Note that Hadamard’s inequality implies |A|n ≥ nn/2 detA
for all matrices A. For l ≥ 1, we define a set Kl by

Kl = {A ∈ Mn×n | |A|n ≤ l nn/2 detA}.(1.1)

If l = 1 then K1 coincides with the conformal set Cn = {λQ |λ ≥ 0, Q ∈ SO(n)},
where SO(n) is the set of all orthogonal matrices X with detX = 1.

The set Kl is related to the theory of l-quasiregular mappings (see Iwaniec [11]

and Reshetnyak [16]). Let Ω ⊂ Rn be a domain and u ∈ W 1,p
loc (Ω;Rn). Denote by

∇u(x) the gradient matrix

(∇u(x))ij = ∂ui(x)/∂xj , 1 ≤ i, j ≤ n.

A map u ∈W 1,p
loc (Ω;Rn) is called (weakly if p < n) l-quasiregular if ∇u(x) ∈ Kl for

a.e. x ∈ Ω. A (weakly) 1-quasiregular map is also called a (weakly) conformal map.
A significant result of Iwaniec [11] (see also [13]) shows that for each n ≥ 3 and

l ≥ 1 there exists a number p∗ < n such that every weakly l-quasiregular map
in W 1,p∗

loc (Ω;Rn) belongs actually to W 1,n
loc (Ω;Rn). Given n ≥ 3, for each l ≥ 1,

let p∗(l) be the infimum of all such numbers p∗ < n as described above. If the
dimension n is even, Iwaniec and Martin [12] has showed that p∗(1) = n/2. A
general conjecture posed in Iwaniec [11] is that p∗(l) = nl

l+1 (see also [12]).
To discuss our main results, we first review some important notation and pre-

liminaries in the calculus of variations that will be needed in this paper.
Let f : Mn×n → R be a function. Denote by Z(f) the zero set of f. Define the

quasiconvexification f qc of f by

f qc(A) = inf
φ∈C∞0 (Ω;Rn)

�
Ω

f(A+∇φ(x)) dx, A ∈Mn×n,(1.2)
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where �Dg denotes the integral average of g over the domain D, i.e.,

�
D

g(x) dx =
1

|D|
∫
D

g(x) dx.

A simple argument using Vitali’s covering shows that f qc(A) is independent of
domain Ω. We say that f is quasiconvex on Mn×n provided that f qc ≡ f. If f
is continuous and satisfies the growth condition (1.3) below then f qc is continuous
and quasiconvex, and in this case for each measurable set S ⊆ Ω the functional
ΦS(u) =

∫
S
f qc(∇u) is sequentially weakly lower semicontinuous on W 1,p(Ω;Rn).

We refer to Acerbi-Fusco [1], Ball [2], Ball-Murat [3], Dacorogna [4] and Morrey
[14] for proofs and further information.

Let K ⊆Mn×n and 1 ≤ p ≤ ∞ be given. Let Q+
p (K) be the set of all continuous

quasiconvex functions f on Mn×n satisfying that K ⊆ Z(f) and

0 ≤ f(X) < C (|X |p + 1) ∀X ∈ Mn×n.(1.3)

Then the W 1,p-quasiconvex hull Qp(K) of K is defined by

Qp(K) =
⋂
{Z(f) | f ∈ Q+

p (K)}.

We refer to Yan [20] for general theory and applications of quasiconvex hulls Qp(K).
It has been proved ([17], [20], [21]) that Q∞(K) = Q1(K) for all bounded sets K,

thus the W 1,p-quasiconvex hulls of a bounded set are the same for all 1 ≤ p ≤ ∞.
For unbounded sets, however, W 1,p-quasiconvex hulls may depend remarkably on
values of p ≥ 1. For instance, the following has been proved in Müller-Šverák-Yan
[15] and Yan [19].

Theorem A. Let n ≥ 3. Then Qp(Cn) = Cn for p ≥ n, while Qp(Cn) = Mn×n for
1 ≤ p < n/2. Moreover, if n is even then Qp(Cn) = Cn for p ≥ n/2.

In this paper, we shall study the W 1,p-quasiconvex hull Qp(Cn) for n/2 ≤ p < n
when n ≥ 3 is odd. We shall prove the following main theorem.

Theorem B. For n ≥ 3 there exists a p < n such that Qp(Cn) ≡ Cn. Moreover, if
p0(n) denotes the infimum of all such p, then p0(n) ≥ n/2.

Remark. First, the second part of the theorem follows directly from Theorem A.
Secondly, if n is even, p0(n) = n/2 and is also the minimum; however, we do
not know whether p0(n) = n/2 if n is odd. Finally, the following stability result
on weakly almost conformal mappings can be derived from Theorem B (see [20,
Theorem 3.1]).

Corollary C. Let n ≥ 3, and let {uj} in W 1,p(Ω;Rn) be a sequence of (weakly
if p < n) almost conformal mappings in the sense that

∫
Ω
dpCn(∇uj) → 0 as j →

∞, where dCn(X) is the distance from X to Cn. If uj ⇀ u0 in W 1,p(Ω;Rn) and
p0(n) < p ≤ n, then the weak limit u0 is weakly conformal.

2. Nonlinear Hodge decompositions

One of the key tools for proving the main theorem is the following stability result
on nonlinear Hodge decompositions due to Greco–Iwaniec [10] (see also [11], [13]).
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Lemma 2.1. Let n ≥ 3 and n − 1
2 ≤ p ≤ n, and let B = B(a,R) be a ball in

Rn with center a and radius R. Then for each u ∈ W 1,p(B;Rn) the matrix field

|∇u|p−n∇u ∈ L p
1+p−n (B;Mn×n) can be decomposed as

|∇u(x)|p−n∇u(x) = ∇ψ(x) + h(x) a.e. x ∈ B,(2.1)

where ψ ∈ W 1, p
1+p−n (Rn;Rn) and h ∈ L

p
1+p−n (Rn;Mn×n) is a divergence free

matrix field such that

‖h‖
L

p
1+p−n (Rn)

≤ (n− p)βn ‖∇u‖1+p−n
Lp(B) .(2.2)

Proof. Decomposition (2.1) follows from Greco–Iwaniec [10, Lemma 2.1] with ε =
n− p ∈ [0, 1

2 ]. In this case, we have(∫
Rn

|h (x)|n−ε1−ε dx
) 1−ε
n−ε ≤ A(n, n− ε) ε

(∫
B

|∇u(x)|n−ε dx
) 1−ε
n−ε

.(2.3)

As seen in the arguments of Greco–Iwaniec [10, Lemma 2.1] and Iwaniec–Sbordone
[13, (1.13) and (2.10)], the constant A(n, n− ε) in (2.3) can be chosen independent
of ε if 0 ≤ ε ≤ 1/2. The proof is completed.

We need a similar decomposition for mappings with affine boundary condition.

Proposition 2.2. Let n − 1
2 ≤ p ≤ n and u ∈ W 1,p(B;Rn) satisfy u|∂B = Ax.

Then we have decompositions

|∇u(x)|p−n∇u(x) = ∇Ψ(x) +H(x) a.e. x ∈ B(2.4)

which satisfy

�
B

∇Ψ = |A|p−nA, ‖H‖
L

p
1+p−n (B)

≤ (n− p)αn ‖∇u‖1+p−n
Lp(B) .(2.5)

Proof. For simplicity, let q = p
1+p−n and q∗ be the Sobolev index of q, i.e., (q∗)−1 =

q−1 − n−1. Let B = Br with radius r > 0. Extend u(x) by Ax outside Br and
apply Lemma 2.1 to u ∈W 1,p(B3r;R

n); we have

|∇u(x)|p−n∇u(x) = ∇ψ(x) + h(x) a.e. x ∈ B3r.(2.6)

Since ∇u ≡ A outside Br, we easily have ‖∇u‖Lp(B3r) ≤ cn ‖∇u‖Lp(Br). Thus using
(2.2) on B3r we have

‖h‖Lq(Rn) ≤ (n− p)β′n ‖∇u‖1+p−n
Lp(Br)

.(2.7)

Define Ψ(x) = ψ(x)+A0 x and H(x) = h(x)−A0, where A0 = |A|p−nA−�Br
∇ψ so

that �Br
∇Ψ = |A|p−nA. Then (2.4) follows easily. We need to estimate ‖H‖Lq(Br).

To this end, let f(x) = |A|p−nAx−ψ(x)+γ and γ be the constant making
∫
D f = 0,

whereD = B3r\Br. It is easy to see that f is both harmonic and satisfies∇f = h in
D. Hence, for any z ∈ ∂B2r, using the mean value theorem of harmonic functions,
we deduce by the Hölder and Sobolev–Poincaré inequalities

|f(z)| =
∣∣∣ �

B(z,r)

f
∣∣∣ ≤ cnr

− n
q∗ ‖f‖Lq∗(D)

≤ cnr
− n

q∗ ‖∇f‖Lq(D) ≤ cn r
1−n

q ‖h‖Lq(Rn).(2.8)
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Note that |Br|A0 =
∫
Br
∇f =

∫
B2r

∇f − ∫
B2r\Br

h. Thus by Hölder’s inequality,

second term on the right-hand side can be estimated as∣∣∣ ∫
B2r\Br

h
∣∣∣ ≤ cn r

n(1− 1
q )‖h‖Lq(Rn);

while the first term by using the divergence theorem and (2.8) can be estimated as∣∣∣ ∫
B2r

∇f
∣∣∣ =

∣∣∣ ∫
∂B2r

f ⊗ ~n
∣∣∣ ≤ cn r

n(1− 1
q ) ‖h‖Lq(Rn),

where ~n is the unit normal vector on the boundary. Therefore, we obtain

|A0| ≤ cn r
− n

q ‖h‖Lq(Rn), ‖A0‖Lq(Br) ≤ cn ‖h‖Lq(Rn).(2.9)

Since H = h−A0, we have

‖H‖Lq(Br) ≤ ‖h‖Lq(Br) + ‖A0‖Lq(Br) ≤ cn ‖h‖Lq(Rn),

which combined with (2.7) yields the second estimate on H in (2.5). The proof is
thus completed.

Let

p1(n) = max {n− 1

2
, n− 1

2αn
}, l(p) =

1

1− (n− p)αn
.(2.10)

We shall also need a regularity result on quasiregular mappings based on the work
of Iwaniec [11].

Lemma 2.3. There exists a p2(n) ∈ [p1(n), n) such that if u ∈ W 1,p
loc (Ω;Rn) and

∇u(x) ∈ Kl(p) for some p ≥ p2(n) then u ∈ W 1,n
loc (Ω;Rn).

Proof. Let p∗(l) be as defined in the introduction. Then it is easily seen that p∗(l)
is nondecreasing, thus the function µ(p) = p− p∗(l(p)) is increasing on [p1(n), n).
Since µ(p) → n− p∗(1+) > 0 as p→ n−, hence there exists p2(n) ∈ [p1(n), n) such
that µ(p) > 0, i.e., p > p∗(l(p)), for all p2(n) ≤ p ≤ n. Therefore, by definition of
p∗(l), we deduce the conclusion of the lemma.

3. Coercivity estimates below the dimension

In this section, we prove some coercivity estimates for conformal energy func-
tionals (see Yan [19]) in W 1,p(Ω;Rn) for p < n.

Theorem 3.1. Let f be a nonnegative continuous function which is homogeneous
of degree 1 and satisfies Z(f) = Cn. Then for any ball B and p ∈ [n − 1

2 , n] and
δ > 0 there exists a constant Cf (n, δ) such that

[1− (n− p)αn − δ] �
B

|A+∇φ(x)|p dx− n
n
2 |A|p−n detA

≤ Cf (n, δ) �
B

fp(A+∇φ(x)) dx, A ∈Mn×n, φ ∈ C∞0 (B;Rn).(3.1)

Proof. We prove (3.1) first for a special function f = h, then the general case will
follow from homogeneity (see [15]). To this end, consider F : Mn×n → Mn×n

defined by

F (X) = |X |n−2X − n
n−2

2 (adjX)T ,
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where adjX is the adjugate matrix of X, i.e., X (adjX) = (detX) I with I being

the identity matrix. Let h(X) = |F (X)| 1
n−1 . Then h is continuous and homogeneous

of degree 1 and satisfies Z(h) = Cn. We now prove the theorem for f = h.
For A ∈ Mn×n, φ ∈ C∞0 (B;Rn), let u(x) = Ax+φ(x) and let Ψ, H be as given

in (2.4). Note that

F (∇u) : ∇Ψ = |∇u|p − |∇u|n−2∇u : H − n
n−2

2 (adj ∇u)T : ∇Ψ,(3.2)

thus using div[(adj ∇u)T ] = 0 and the divergence theorem, we have by (2.5)∫
B

n
n−2

2 (adj ∇u)T : ∇Ψ = n
n−2

2 (adj A)T :

∫
B

∇Ψ = n
n
2 |A|p−n det A |B|.

Integrating (3.2) over B and using estimates in (2.5) and Young’s inequality, we
obtain

[1− (n− p)αn ] �
B

|∇u|p − n
n
2 |A|p−n det A ≤ �

B

|∇Ψ| |F (∇u)|

≤ δ �
B

|∇u|p + C(n, δ) �
B

hp(∇u),

which proves (3.1). The proof is completed.

Let l(p) and p2(n) be defined by (2.10). Then 1 ≤ l(p) ≤ 2 for p ∈ [p2(n), n]. In
(3.1), note that �B |A+∇φ|p ≥ |A|p, and thus by (1.2) we have

(fp)qc(A) = inf
φ∈C∞0 (B;Rn)

�
B

fp(A+∇φ)

≥ |A|p−n
Cf (n, δ)

[
(l(p)

−1 − δ) |A|n − n
n
2 det A

]
.(3.3)

Corollary 3.2. Let f be as given in the theorem. Then Z((fp)qc) ⊆ Kl(p) for all
p ∈ [p2(n), n], where l(p) is defined as in (2.10). In particular, Z((fn)qc) = K1 =
Cn.
Proof. Suppose (fp)qc(A) = 0. Then (3.3) implies [l(p)

−1 − δ] |A|n ≤ n
n
2 det A for

all δ > 0. Hence, letting δ → 0+, we have |A|n ≤ l(p)n
n
2 detA, thus A ∈ Kl(p).

In Theorem 3.1, choose f = dCn , A = 0 and δ = 1/3; then we recover a result
proved earlier in Yan [18].

Corollary 3.3. There exists a constant Γn such that for all p2(n) ≤ p ≤ n and all
balls B, ∫

B

|∇φ(x)|p dx ≤ Γn

∫
B

dpCn(∇φ(x)) dx, φ ∈ W 1,p
0 (B;Rn).(3.4)

4. Ekeland’s variational principle and higher regularity

In this section, we combine the Ekeland variational principle and the reverse
Hölder inequality with increasing support to obtain a higher regularity for certain
minimizing sequences of a conformal energy functional.

First of all, we state the following version of Ekeland’s variational principle; see
[5] and [6, Thm 4.2].
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Lemma 4.1. Let (V , d) be a complete metric space and J : V → R∪{+∞} a lower
semicontinuous functional which is bounded below. Let uj ∈ V be given such that

J(uj) ≤ infv∈V J(v) +
1

2 j2
.

Then there exists vj ∈ V such that J(vj) ≤ J(uj) and d(vj , uj) ≤ 1/j and

J(vj) < J(w) + j−1 d(w, vj) ∀w ∈ V , w 6= vj .(4.1)

In what follows, let p ∈ [p2(n), n) and A ∈ Z((dpCn)qc), and B be the unit ball.
Define

V = {Ax+ φ(x) |φ ∈W 1,1
0 (B;Rn)}, d(u, v) =

∫
B

|∇u−∇v|, u, v ∈ V .

Then (V , d) is a complete metric space. Let Jp : V → R ∪ {+∞} be a functional
defined by

Jp(u) =

∫
B

dpCn(∇u(x)) dx, u ∈ V .

Then Fatou’s lemma easily shows that Jp is lower semicontinuous on (V , d). A
technical advantage of using the distance function can be seen later. Since A ∈
Z((dpCn)qc), we have a sequence {φj} in C∞0 (B;Rn) such that∫

B

dpCn(A+∇φj(x)) dx ≤ 1

2j2
, ∀ j = 1, 2, · · · .

Let uj(x) = Ax + φj(x). Then uj ∈ V , Jp(uj) ≤ 1
2j2 , and thus infv∈V Jp(v) = 0.

Hence, by Lemma 4.1, there exist vj ∈ V for j = 1, 2, ... such that∫
B

dpCn(∇vj) ≤ 1

2 j2
,

∫
B

|∇uj −∇vj | ≤ j−1,(4.2)

∫
B

dpCn(∇vj) ≤
∫
B

dpCn(∇w) + j−1

∫
B

|∇vj −∇w|, ∀w ∈ V .(4.3)

With these at our disposal, we can prove the following result.

Proposition 4.2. Both {uj} and {vj} are bounded in W 1,p(B;Rn). If we assume
they converge weakly in W 1,p(B;Rn), then the weak limits must be equal and belong
to W 1,n(B;Rn).

Proof. The boundedness of both sequences and the coincidence of weak limits follow
from (4.2) and Corollary 3.3. Let u0 be the weak limit. Then from weak lower
semicontinuity ([1], [3]),∫

B

(dpCn)qc(∇u0) ≤ lim
j→∞

∫
B

(dpCn)qc(∇uj) ≤ lim
j→∞

∫
B

dpCn(∇uj) = 0.

Thus, ∇u0(x) ∈ Z((dpCn)qc) ⊆ Kl(p). Since p2(n) ≤ p ≤ n, Lemma 2.3 thus con-

cludes u0 ∈W 1,n(B;Rn).

We now use techniques of Caccioppoli-type estimates to derive the reverse Hölder
inequality with increasing support. Before we proceed with this, several remarks
are in order. First, since the integrand dpCn of Jp does not satisfy the usual growth
condition as assumed in some standard Caccioppoli-type estimates ([8], [9]), we need
our crucial coercivity estimates to obtain the desired reverse Hölder inequality with
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doubling supports. Moreover, we have to pay particular attention to the various
constants involved to assure the uniform increment of the integrability.

Theorem 4.3. Let A ∈ Z((dpCn)qc) and p2(n) ≤ p ≤ n, and let uj and vj be given

as above. Then, for all balls B2R = B(a, 2R) ⊂⊂ B,

�
BR

|∇vj |p ≤ βn

(
�
B2R

|∇vj |
pn
n+p

)n+p
n

+ γn, ∀j ≥ Nn,(4.4)

where βn, γn and Nn are constants depending only on the dimension n.

Proof. In what follows, we use c0, c1, ... to denote the constants depending only on
dimension n. Let B2R = B(a, 2R) ⊂⊂ B and ν a number to be chosen later. Given
0 < s1 < s2 ≤ 2R, let η ∈ C∞0 (B) be a cut-off function such that

0 ≤ η ≤ 1, η |Bs1
= 1, η |B\Bs2

= 0, |∇η| ≤ c0 (s2 − s1)
−1.

Let w = η ν + (1− η) vj and φ = vj − w. Then w ∈ V , φ ∈W 1,p
0 (Bs2 ;R

n) and

∇w = (1 − η)∇vj − (vj − ν)⊗∇η, ∇φ = η∇vj + (vj − ν)⊗∇η.(4.5)

By inequality dpK(X + Y ) ≤ 2n (dpK(X) + |Y |p) and Corollary 3.3, we have∫
Bs1

|∇vj |p ≤
∫
Bs2

|∇φ|p ≤ Γn

∫
Bs2

dpCn(∇φ)

≤ c1

∫
Bs2

dpCn(∇vj) +
c1

(s2 − s1)p

∫
Bs2\Bs1

|vj − ν|p.(4.6)

Using (4.5), noting that ∇w = 0 on Bs1 and dpCn(X) ≤ |X |p, we deduce∫
Bs2

dpCn(∇w) ≤ c2

∫
Bs2\Bs1

|∇vj |p +
c2

(s2 − s1)p

∫
Bs2\Bs1

|vj − ν|p.(4.7)

Since ∇w = ∇vj in B\Bs2 , combining (4.3) and (4.5)–(4.7) gives∫
Bs1

|∇vj |p ≤ c3

∫
Bs2\Bs1

|∇vj |p+

c3
(s2 − s1)p

∫
B2R

|vj − ν|p +
c3
j

∫
Bs2

|∇vj −∇w|.

Let Nn = 2 c3 and j ≥ Nn. Then by inequality t ≤ tp + 1 for all t ≥ 0 and p ≥ 1,∫
Bs1

|∇vj |p ≤ c4
1 + c4

∫
Bs2

|∇vj |p +
c5

(s2 − s1)p

∫
B2R

|vj − ν|p + c6 |B2R|.

Using this and the standard hole-filling arguments ([9, Lemma 5.1]), we have∫
BR

|∇vj |p ≤ c7R
−p

∫
B2R

|vj − ν|p + c7 |B2R|,(4.8)

which yields

�
BR

|∇vj |p ≤ c8
Rn+p

∫
B2R

|vj − ν|p + c8.(4.9)



488 BAISHENG YAN AND ZHENGFANG ZHOU

Now let ν = νR = �B2R
vj and use the Sobolev–Poincaré inequality∫

B2R

|vj − νR|p ≤ σn

(∫
B2R

|∇vj |
pn
n+p

)n+p
n

in (4.9), we obtain (4.4). The theorem is thus proved.

Theorem 4.4. There exists εn > 0 depending only on n such that for any p ∈
[p2(n), n], A ∈ Z((dpCn)qc) and sequences {uj} and {vj} defined as above, one has∫

Ω

|∇vj |p+εn ≤MΩ <∞ for all j ≥ Nn and Ω ⊂⊂ B,(4.10)

where Nn is the constant in the previous theorem.

Proof. For j ≥ Nn, let fj = 1 + |∇vj |
pn
n+p and r = n+p

n . By Proposition 4.2 and
Theorem 4.3, {fj} is bounded in Lr(B) and

�
BR

f rj ≤ β′n
(
�
B2R

fj

)r
∀B2R = B(a, 2R) ⊂⊂ B.

Therefore, by an improved version [9, Thm 6.1] of Gehring’s Lemma [7, Lemma 2]

on reverse Hölder inequality, we have {fj} is (locally) bounded in Lr
′
loc(B) for some

r′ > r, thus {vj} is (locally) bounded in W 1,p+ε
loc (B) for some ε > 0. Furthermore,

from the proof of [9, Thm 6.1], one sees that the increment ε > 0 can be chosen
uniformly for p ∈ [p2(n), n].

5. Proof of the main result: Theorem B

Let p ∈ [p2(n), n]. We shall prove Z((dpCn)qc) = Cn; thus Qp(Cn) = Cn. Suppose

A ∈ Z((dpCn)qc). Let {uj} and {vj} be defined as before and let u0 be the weak

limit in Proposition 4.2. Then vj ⇀ u0 in W 1,p+εn
loc (B;Rn), where εn > 0 is the

constant determined in Theorem 4.4. Let s = p + εn
2 ; then inequality dsCn(X) ≤

δ |X |p+εn + C(δ) dpCn(X) and Theorem 4.4 imply∫
Ω

dsCn(∇vj) ≤ δ

∫
Ω

|∇vj |p+εn + C(δ)

∫
Ω

dpCn(∇vj) ≤ δMΩ +
1

2j2
C(δ)

for all Ω ⊂⊂ B. Let first j →∞ and then δ → 0; we have
∫
Ω dsCn(∇vj) → 0 which,

by vj ⇀ u0 in W 1,p+εn(Ω;Rn), implies∫
Ω

(dsCn)qc(∇u0) ≤ lim
j→∞

∫
Ω

dsCn(∇vj) = 0.

Since Ω ⊂⊂ B is arbitrary, so
∫
B (dsCn)qc(∇u0) = 0. Note that u0 ∈ W 1,n(B;Rn)

and u0(x) = Ax on ∂B. A simple approximation argument shows

(dsCn)qc(A) ≤ �
B

(dsCn)qc(∇u0(x)) dx = 0,

hence, A ∈ Z((dsCn)qc) for s = p+ εn
2 . Repeating this procedure finitely many times,

we eventually obtain A ∈ Z((dnCn)qc); hence by Corollary 3.2

Z((dpCn)qc) = Z((dnCn)qc) = K1 = Cn
as desired. Theorem B is thus proved.
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