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ON THE WEAK LIMIT OF MAPPINGS
WITH FINITE DISTORTION

BAISHENG YAN

(Communicated by Albert Baernstein II)

Abstract. We give a new proof that the limit of a weakly convergent sequence
of mappings with finite distortion also has finite distortion. The result has
been recently proved by Gehring and Iwaniec using the biting convergence of
Jacobians. We present a different proof using simply the lower semi-continuity
of quasiconvex functionals.

1. Introduction

Let f : Ω → Rn be a mapping in the Sobolev space W 1,p
loc (Ω; Rn), where Ω is a

domain in Rn. Then the Jacobian matrix Df(x) and its determinant J(x, f) =
detDf(x) are well-defined at almost every point x ∈ Ω. We shall use Mn×n to
denote the space of all n× n real matrices equipped with the operator norm

|ξ| = max{|ξv| | |v| = 1}.

Definition 1.1. A mapping f ∈ W 1,n
loc (Ω; Rn) is said to have finite distortion if

there exists a finite measurable function K(x) ≥ 0 such that

|Df(x)|n ≤ K(x)J(x, f)(1.1)

for almost every x ∈ Ω.

From this definition, a mapping f with finite distortion has the property that
either the Jacobian matrix Df(x) = 0 or its determinant J(x, f) > 0; in the latter
case the matrix Df(x) is invertible.

Definition 1.2. The outer and inner dilatation functions KO(x, f) and KI(x, f)
of a mapping f with finite distortion are defined as follows:

KO(x, f) = KI(x, f) = 1 if Df(x) = 0;
KO(x, f) = KO(Df(x)),
KI(x, f) = KI(Df(x)) if J(x, f) > 0,

(1.2)

where, for any invertible matrices ξ,

KO(ξ) = |ξ|n/ det ξ, KI(ξ) = KO(ξ−1).(1.3)

We shall prove the following theorem; see also Gehring and Iwaniec [3].
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Theorem 1.3. Let fν : Ω → Rn be a sequence of mappings with finite distortion
which converges weakly in W 1,n

loc (Ω; Rn) to a mapping f . Suppose there exists a
finite measurable function M(x) such that

K(x, fν) ≤M(x) <∞
almost everywhere in Ω for all ν = 1, 2, ..., where K(x, f) is either KO(x, f) or
KI(x, f). Then the limit mapping f has finite distortion. Moreover, for any sub-
sequence fνk , one has

KO(x, f) ≤ lim sup
k→∞

KO(x, fνk)(1.4)

and

KI(x, f) ≤ lim sup
k→∞

KI(x, fνk)(1.5)

for almost every x ∈ Ω.

This theorem is a refinement of Reshetnyak’s convergence theorem [6, Theorem
9.2] concerning mappings of bounded distortion, that is, mappings f with K(x) ≤
K < ∞ for a constant K in (1.1). For such mappings, the (maximum) outer and
inner dilatations are defined by

KO(f) = ‖KO(x, f)‖L∞(Ω), KI(f) = ‖KI(x, f)‖L∞(Ω).

In Theorem 1.3, if fν has bounded distortion and satisfies

KO(fν) ≤M <∞
for a constant M and all ν = 1, 2, ..., then from (1.4) and (1.5) we can establish

KO(f) ≤ lim inf
ν→∞

KO(fν), KI(f) ≤ lim inf
ν→∞

KI(fν),(1.6)

which recovers Reshetnyak’s convergence theorem [6, Theorem 9.2].
Finally, we remark that the estimate (1.4) seems weaker than the estimate given

in Gehring and Iwaniec [3, Remark 1.7] in terms of biting convergence. We also
refer to [3, 4] for the convergence results regarding other dilatation functions.

2. Variational approaches

In order to present our proof of Theorem 1.3, we need some variational charac-
terizations of mappings with finite distortion.

For any given finite measurable function K(x) on Ω, consider the function from
Ω×Mn×n to R defined by

F1(x, ξ) = max{0, |ξ|n −K(x) det ξ}.(2.1)

It is easy to see that

0 ≤ F1(x, ξ) ≤ ρ1(x) |ξ|n,
where ρ1(x) = 1 + |K(x)|, and the condition (1.1) in Definition 1.1 is equivalent to

F1(x,Df(x)) = 0

for almost every x ∈ Ω. Hence, any mapping f with finite distortion is an absolute
minimizer of the functional

I1(u,Ω) =
∫

Ω

F1(x,Du(x)) dx,

where F1(x, ξ) is defined by (2.1) with K(x) = KO(x, f).
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In order to give another characterization using the inner dilatation function
KI(x, f), we need some notation. Let ξ# be the matrix of cofactors of matrix ξ
such that

ξξ# = ξ#ξ = (det ξ) I,

where I is the identity matrix. For invertible matrices ξ, this shows that ξ−1 =
ξ#/ det ξ, thus one can easily see that

KI(ξ) = |ξ#|n/(det ξ)n−1.(2.2)

Now let P (x) be any finite measurable function on Ω. Consider

F2(x, ξ) = max{0, |ξ#| nn−1 − P (x) det ξ}.(2.3)

Then F2(x, ξ) also satisfies

0 ≤ F2(x, ξ) ≤ ρ2(x) |ξ|n,

where ρ2(x) = cn + |P (x)|. If f is a mapping with finite distortion, then

F2(x,Df(x)) = 0

for almost every x ∈ Ω, where F2(x, ξ) is defined as above with P (x)=KI(x, f)1/n−1.
Therefore f is an absolute minimizer of the functional

I2(u,Ω) =
∫

Ω

F2(x,Du(x)) dx.

Finally, we remark that functions F1, F2 defined above have the important prop-
erty of quasiconvexity introduced by Morrey [5]; see also Ball [2].

Proposition 2.1. Let F (x, ξ) denote one of F1(x, ξ) and F2(x, ξ) defined by (2.1)
and (2.3). Then, for almost every x ∈ Ω, F (x, ξ) is quasiconvex in ξ in the sense
that

F (x, ξ) ≤ 1
|Ω|

∫
Ω

F (x, ξ +Dφ(y)) dy, ∀φ ∈ C∞0 (Ω; Rn).(2.4)

Proof. For any ξ ∈Mn×n, φ ∈ C∞0 (Ω; Rn), it follows that [2, 5]

det ξ =
1
|Ω|

∫
Ω

det(ξ +Dφ(y)) dy, ξ# =
1
|Ω|

∫
Ω

(ξ +Dφ(y))# dy.

Then, (2.4) follows from the definition of F1, F2 and Jensen’s inequality.

3. Lower semicontinuity

In what follows, we assume that F (x, ξ) is a Carathéodory function from Ω ×
Mn×n to R in the sense that F (x, ξ) is continuous in ξ for almost every x ∈ Ω and
measurable in x for all ξ ∈Mn×n. Assume also that there exists a finite measurable
function ρ(x) ≥ 0 such that

0 ≤ F (x, ξ) ≤ ρ(x) |ξ|p(3.1)

for almost every x ∈ Ω, where 1 ≤ p < ∞ is a constant. We need the following
lower semicontinuity theorem mainly due to Acerbi and Fusco [1].
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Theorem 3.1. Let F (x, ξ) be given as above. Suppose for almost every x ∈ Ω the
function F (x, ξ) is quasiconvex in ξ in the sense as defined in Proposition 2.1. For
any measurable subset E of Ω and t > 0 let

Et = {x ∈ E | ρ(x) < t}.
If fν : Ω → Rn is a sequence of mappings which converges weakly in W 1,p(Ω; Rn)
to a mapping f , then, for every t > 0, one has∫

Et

F (x,Df(x)) dx ≤ lim inf
ν→∞

∫
Et

F (x,Dfν(x)) dx.

Proof. Consider G(x, ξ) = F (x, ξ)χEt(x), where χS denotes the characteristic func-
tion of set S. Then G(x, ξ) is a Carathéodory function and, for almost every x ∈ Ω,
G(x, ξ) is quasiconvex in ξ and satisfies

0 ≤ G(x, ξ) ≤ t |ξ|p.
Therefore, by the lower semicontinuity theorem of Acerbi and Fusco [1, Theorem
II.4], the functional J(u) =

∫
Ω G(x,Du) is (sequentially) weakly lower semicontin-

uous on W 1,p(Ω; Rn). Hence,∫
Et

F (x,Df) = J(f) ≤ lim inf
ν→∞

J(fν) = lim inf
ν→∞

∫
Et

F (x,Dfν).

The theorem is proved.

Theorem 3.2. Suppose a sequence of mappings fν : Ω → Rn converges weakly in
W 1,n
loc (Ω; Rn) to a mapping f . Let K(x) and P (x) be any given finite measurable

functions in Ω, and let F1(x, ξ) and F2(x, ξ) be defined by (2.1) and (2.3), respec-
tively. Assume F (x, ξ) is one of F1 and F2. Let E be a measurable subset of Ω
such that

lim
ν→∞

∫
E

F (x,Dfν(x)) dx = 0.

Then F (x,Df(x)) = 0 for almost every x ∈ E.

Proof. The theorem follows easily from Proposition 2.1 and Theorem 3.1.

Finally, we prove a result which enables us to estimate one dilatation function
in terms of the other.

Lemma 3.3. Let f ∈ W 1,n
loc (Ω; Rn) be a mapping with finite distortion. Then

KO(x, f) ≤ KI(x, f)n−1, KI(x, f) ≤ KO(x, f)n−1

for almost every x ∈ Ω.

Proof. Note that the functions KO(ξ) andKI(ξ) defined by (1.3) can be represented
by the principal values of ξ, that is, the eigenvalues of the matrix

√
ξT ξ. Let

det ξ 6= 0 and let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the principal values of ξ. Then it is
easy to see that

KO(ξ) = λnn/λ1λ2 · · ·λn, KI(ξ) = λ1λ2 · · ·λn/λn1 .
Therefore,

KO(ξ) ≤ KI(ξ)n−1, KI(ξ) ≤ KO(ξ)n−1,

and the lemma follows from the definition of KO(x, f) and KI(x, f).
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4. Proof of Theorem 1.3

By Lemma 3.3, we can assume that the function K(x, f) in Theorem 1.3 is
KO(x, f). Let F1(x, ξ) be defined by (2.1) with K(x) = M(x) as given in the
theorem. We then have F1(x,Dfν(x)) = 0. Thus by Theorem 3.2 it follows that
F1(x,Df(x)) = 0, that is,

|Df(x)|n ≤M(x)J(x, f)

for almost every x ∈ Ω. Therefore, f is a mapping with finite distortion and
KO(x, f) ≤M(x) for almost every x ∈ Ω.

We need to show estimates (1.4) and (1.5). For this purpose, we may assume
that the subsequence fνk is the original full sequence fν . Let

L(x) = lim sup
ν→∞

KO(x, fν), Q(x) = lim sup
ν→∞

KI(x, fν).

We need to show

KO(x, f) ≤ L(x), KI(x, f) ≤ Q(x)(4.1)

for almost every x ∈ Ω.
If J(x, f) = 0, that is, Df(x) = 0, then KO(x, f) = 1 ≤ L(x) and KI(x, f) =

1 ≤ Q(x), and hence (4.1) holds. So we have only to prove (4.1) for almost every x
in the measurable set Ω′ = {x ∈ Ω | J(x, f) > 0}. We assume |Ω′| > 0, and let

N = {x ∈ Ω′ |L(x) < KO(x, f)}, R = {x ∈ Ω′ |Q(x) < KI(x, f)}.
We need to show |N | = |R| = 0. Note that

N =
∞⋃
m=1

∞⋃
k=1

Nmk, R =
∞⋃
m=1

∞⋃
k=1

Rmk,(4.2)

where

Nmk =
∞⋂
ν=k

{
x ∈ Ω′ |KO(x, fν) ≤ KO(x, f)− 1

m

}
(4.3)

and

Rmk =
∞⋂
ν=k

{
x ∈ Ω′ |KI(x, fν) ≤ KI(x, f)− 1

m

}
.(4.4)

We shall prove |Nmk| = |Rmk| = 0 for all m, k = 1, 2, ... and hence |N | = |R| = 0.
This will complete the proof of (4.1).

Proof of |Nmk| = 0. Note that KO(x, fν) ≤ KO(x, f) − 1/m for all x ∈ Nmk and
all ν ≥ k. We have

|Dfν(x)|n ≤
(
KO(x, f)− 1

m

)
J(x, fν)

for all ν = k, k + 1, ... and almost every x ∈ E = Nmk. Hence, by Theorem 3.2,

|Df(x)|n ≤
(
KO(x, f)− 1

m

)
J(x, f)

for almost every x ∈ E = Nmk. Since J(x, f) > 0 for x ∈ E, it follows that
KO(x, f) ≤ KO(x, f) − 1/m for almost every x ∈ E. Hence, |E| = |Nmk| = 0 for
all m, k = 1, 2, ...; the proof is complete.
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Proof of |Rmk| = 0. This is similar to the previous one. Note that KI(x, fν) ≤
KI(x, f)− 1/m for all x ∈ Rmk and all ν ≥ k. Let F2(x, ξ) be the function defined
by (2.3) with

P (x) = (KI(x, f)− 1/m)
1

n−1 .

We then have F2(x,Dfν(x)) = 0 for almost every x ∈ E = Rmk and all ν ≥ k.
Therefore, again by Theorem 3.2, F2(x,Df(x)) = 0 for almost every x ∈ Rmk. This
implies

|(Df(x))#| n
n−1 ≤ P (x)J(x, f)

and thus by (2.2)

KI(x, f) ≤ (P (x))n−1 = KI(x, f)− 1/m

for almost every x ∈ Rmk. Thus |Rmk| = 0. The proof of Theorem 1.3 is complete.
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