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A BAIRE’S CATEGORY METHOD FOR THE DIRICHLET
PROBLEM OF QUASIREGULAR MAPPINGS

BAISHENG YAN

ABSTRACT. We adopt the idea of Baire’s category method as presented in a
series of papers by Dacorogna and Marcellini to study the boundary value
problem for quasiregular mappings in space. Our main result is to prove that
for any € > 0 and any piece-wise affine map ¢ € W™ (Q; R™) with | Dy (z)|” <
Ldet Dp(z) for almost every x € § there exists a map u € W™ (Q; R") such
that
{|Du(m)" = Ldet Du(z) a.e.z € Q,
uloa =@, |lu—plLn@) <e

The theorems of Dacorogna and Marcellini do not directly apply to our result
since the involved sets are unbounded. Our proof is elementary and does not
require any notion of polyconvexity, quasiconvexity or rank-one convexity in
the vectorial calculus of variations, as required in the papers by the quoted
authors.

1. INTRODUCTION

Given L > 1, we consider the following Dirichlet problem of first-order partial
differential equations:

(1) |Du(x)|™ = Ldet Du(x), z €,
u(@) = p(), v e o9,

where €2 is a bounded open set in R™ with boundary 09, u: Q@ — R", Du(z) is the
Jacobi matrix of u and |Du(z)| uses the matrix operator norm (see (I6) below).
Here ¢ is a given map.

In this paper, we study solutions of ((LT]) that only have certain weak derivatives.
Throughout the paper, we assume solutions u to be in some Sobolev space, that
is, u € W1P(Q; R"), and thus the equation in (1)) is required to be satisfied only
for almost every x € €2 and the boundary condition is understood in the sense of
Sobolev functions.

Following Iwaniec [6], the weakly L-quasiregular mappings are defined to be
mappings u € VVli’p(Q; R"™), with some p > 1, that satisfy

|Du(x)|™ < Ldet Du(z), a.e. x €.

Therefore (LI) can be considered as a Dirichlet problem for a special class of weakly
quasiregular mappings. If p > n, the weakly quasiregular mappings in WP (Q; R™)
are the usual quasiregular mappings, which are also called mappings of bounded
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distortion [9]. A classical Liouville’s theorem asserts that any usual 1-quasiregular
mapping is a restriction of Mobius transformation on 2; thus there are not too many
of them. So, in this paper we restrict ourselves to the L-quasiregular mappings with
L>1.

In Yan [10, [11l [12], we studied the boundary value problem for weakly L-
quasiregular mappings in WHP(Q; R") with 1 < p < L”—Jfl In particular, the
following result has been proved in [12] (see also [L1]).

Theorem 1.1 (|12, Theorem 3.2]). Let 1 < p < L”—fl Then, for any e > 0 and any
piece-wise affine map ¢ € WHP(Q; R™), there exists a solution u € WHP(Q; R™) of
(LX) satisfying |[u — ¢l[Le) <€

Here, and throughout the present paper, a map p: 0 — R"™ is said to be piece-

wise affine if there exists a countable family of disjoint open sets §2; C Q such that

=0.

(1.2) ola, = &z + by, ‘Q\ Ue
Jj=1

This theorem asserts that the boundary map ¢ of very weakly quasiregular maps
can be any affine map ¢ = £x +b. However, this cannot be the case if we study the
usual quasiregular maps in W (; R").

We have the following

Theorem 1.2. Given any affine map Ex + b, the Dirichlet problem

|Du(x)|™ = Ldet Du(x), a.e. z €,
u|aQ = f(E +b

is solvable in WL (Q; R™) if and only if |€|* < Ldet&.

The necessary part of this result follows easily from integrating the equation and
using the boundary condition and property of determinants; see also [I1] Theorem
1.1] for a stronger result in WHP(Q; R™) with p > n —e.

The sufficient part of the theorem will be a special case of the main result of our
present paper. (See Theorem [[L4]below.)

In order to state our main theorem, we introduce some notation. Given L > 1,
consider the sets

(1.3) Z=27p={{e M " | [¢|" = Ldet},
(1.4) U=Up={teM™||¢* < Ldet¢},
(1.5) K =Kp={{eM""|[{" < Ldet{},

where M™*™ denotes the space of n X n matrices with operator norm
(1.6) |€] = max{|¢h| | h € R", || = 1}.

When L = 1, it is easily seen that U; = () and K7 = Z; coincide with the set of
conformal matrices, that is,

In the following, we shall always assume L > 1, thus U = Uy, # (.
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Definition 1.1. Let ¢» € W'?(Q;R"). Define Allb’p(Q; U) to be the closure in

the LP-norm of the set of piece-wise affine maps u € ¥ + Wol P(Q; R™) that satisfy
Du(x) € U for almost every z € Q.

Remarks. 1) Since we use the LP-closure, unlike the space used in [4], our set
Allp’p (Q; U) is only a closed subspace of LP(£2; R™) and it may be empty, for example,
if p>nand ¢ =&x with £ € K.

2) Clearly, we have ¢ € Allp’p (Q;U) # 0 if 1 is itself a piece-wise affine map in
WP (Q; R") satisfying Dy(x) € U for almost every z € Q.

3) We shall prove later that, for p > n, the set Allz)’p(Q; U) is actually a subset
of 1 + Wy ™ (€; R™) with bounded W' -norm. (See Proposition 23] and estimate
29) in ) O

The main result of this paper is the following
Theorem 1.3. Let L > 1 and ¢ € WE™(Q; R™). Assume A}J”(Q; U)#0. Then,
for any e > 0 and any ¢ € A}J”(Q; U), there exists a map u € A;’"(Q; U) satisfying

lu—llLn@) <, |Du(z)|” = Ldet Du(z) a.e. x € Q.

Our next result, which follows readily from Theorem [[13] generalizes the sufficient
part of Theorem [ (compare also with Theorem [T.).

Theorem 1.4. For any € > 0 and any piece-wise affine map ¢ € WH™(Q; R"™) sat-
isfying |Dp(z)|™ < Ldet Do(z) a.e. in 2, there exists a solution u € W1 (Q; R")
of (L) satisfying |lu— ¢llLn(o) <e.

In Yan [12], the proof of Theorem [l has relied on an important technique
developed in Yan [10) 1] using the idea of convex integration motivated by the
work of Miiller & Sverdk [7] (see also Miiller & Sychev [§]).

In this paper, we shall exploit the idea of Baire’s category method as explored in
the papers of Dacorogna & Marcellini [3], [4] to prove the main result Theorem [[.3]

However, since the sets K = K, and Z = Z}, are unbounded, none of the results
in papers [3] [, [7, ] mentioned above will work directly for our theorems and, as
we shall see later, constructions leading to the Baire’s category method in our proof
are quite different from those given in [3] @].

The proof we present here is elementary and does not require any notion of
polyconvexity, quasiconvexity or rank-one convexity in the vectorial calculus of
variations, as required in [3 4]. However, to avoid using quasiconvexity and the
related powerful lower semicontinuity theorems as given in Acerbi & Fusco [I], in
some part of the proof, we will need to rely on some higher regularity result for
quasiregular mappings [5] and weak convergence result for the determinant [2] [9)].

Finally, to motivate how the Baire’s category method comes into play in solving
our problem, let us define the solution set in Theorem [[3]to be the set

(1.7) Sy Z) ={ue A" (V) | Du(x) € Z ae. x € Q}.
Then Theorem [I.3 is equivalent to the following
Theorem 1.5. Sij"(Q;Z) is dense in A;’"(Q; U) in the L™-metric.

We set up the problem in the frame-work of Baire’s category method in §21 A
critical requirement in using the Baire’s category theorem, that is, the density of
certain open sets, is fulfilled in §31 Finally, our main results are proved in the last
section, J4l
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2. THE SETTING OF BAIRE’S CATEGORY METHOD

We shall use the following version of Baire’s category theorem, the proof of which,
given below, is elementary and included here for the convenience of the reader.

Theorem 2.1. Let (X, p) be a nonempty complete metric space. Suppose {Vj} is
a family of open and dense sets in (X, p). Then the intersection set S = (\re; Vi
is also dense in (X, p) and thus is nonempty.

Proof. Suppose not. Then the set G = X\S # () is an open subset of (X, p). We
use the notation:

(2.1) B(a,r) ={z € X | p(z,a) < r},
(2.2) Bla,r] ={x € X | p(z,a) <7}.

Then B(a,r) is an open set in (X, p) and its closure B(a,r) is contained in the
closed ball Bla,r].

Since G # () is open, we assume B(ag,r9) C G for some ag and rg. Since V; is
dense and open, it follows that the open set V4 N B(ag, 7o) is nonempty; therefore,
there exist a; € ViNB(ag,ro) and r1 € (0,79/2) such that Blay,r1] C ViNB(ag,ro).
Inductively, we have ag+1 € Viy1 N Blak, ) and g1 € (0,7, /2) such that

(2.3) Blag+1, 7k+1) C Vier1 N B(ag, ri), k=0,1,2,....
This implies the sequence {ay} is a Cauchy sequence in (X, p) as one has, by (23,
T
plakyi,a) < rp < 2—2, Vk=0,1,2,....

Since (X, p) is a complete metric space, we have ap — @ as k — oo for some
@ € X. But, since ay € B(a;,r;) for all 1 < j < k, one has @ € Blaj, ;| for

all j = 1,2,...; therefore, by (Z3) again, a € (,o; Vi« = S. However, since
a € Blai,m1] € Vi N B(ag,ro), one has @ € G, which is a contradiction with
a € S C X\G. The proof is finished. O

We now set up the frame-work of using this Baire’s category theorem to prove
our main result as formulated in the form of Theorem .5
Let 1 € W(£; R™) be a given map such that

(2.4) X =AM U) #0.
Since X is an L"-closure, we easily have the following
Lemma 2.2. (X, L") is a complete metric space.

It appears that X is only a closed subspace of L™(€2; R™). However, the following
result asserts that X is actually more “regular” than it appears.

Proposition 2.3. X C {p € ¢+ W, (Q;R") | Dp(z) € K}.

Proof. Let ¢ € A}J”(Q; U). Then, by definition, there exists a sequence {u;} of
piece-wise affine maps in v + Wol’n(Q; R™) satisfying

(2.5) |Du;(z)|" < Ldet Duj(z),

(26) Jim [lu; ~ ol

L) = 0.
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Since uj|an = 9, integration of (2.1 over 2 implies
/ |Duj(z)|"dx < L/ det Dy (x)dx = My, < .
Q Q

Therefore, {u;} has a subsequence (labelled the same) that converges weakly to
some P in ¥ + Wol’"(Q; R"™) and hence converges to @ in the L™-norm. On the
other hand, u; — ¢ in the L™-norm, thus ¢ = ®. This shows ¢ € ¥+ Wy (9 R™)
and hence AL’”(Q; U) €+ Wy (S R™).

Finally, we prove Dp(z) € K a.e. in by using some regularity result for
quasiregular mappings and weak convergence of the determinant; we could also
prove this using a lower semicontinuity theorem in Acerbi & Fusco [1], but we
choose not to use that theorem here as we try to avoid the quasiconvexity condition
required in the paper [I].

To prove Dp(z) € K a.e. in 2, we note that, by the well-known theorem of

Gehring [5], maps satisfying (25) belong to VVli’CrH'E (€; R™) for some € > 0; in fact,
one has
sup |Duj(z)["dx < C(Y) < 00, V' CC Om.
j=1,2,... Jor

Since the determinant is weakly continuous in space WHmT¢(Q/; R™) (see [2,[]), it
therefore follows that

(2.7) / |Dgp|"dx§hminf/ |Duj|"dx
Q J—00 Q
(2.8) < Lli_minf/ detDujdx:L/ det Ddzx
j"w ’ U

for all Q" cC Q. Hence, |Dyo(z)|™ < Ldet Dy(zx), that is, Dp(z) € K, for almost
every x € ().
The proof is now completed. O

From the proof above, we have also proved that

(2.9) /Q |Dep(z)["da < My < 0o, Vo€ Ay (Q:U).
Let

(2.10) F(&) = || — Ldeté.

Then the sets defined by (C3)~(H) are given by

(2.11) Z={{eM"" | F(§) =0},

(2.12) U={eM™" | F(¢) <0},

(2.13) K ={{eM™" | F({) < 0}.

Since X C ¢ + Wol’"(Q;R"), we can thus define the following sets, for k =
1,2,...:

(2.14) Vie = {v € X| /QF(DU(:C))dx > —1/k}.

Lemma 2.4. Vj, is open in (X,L™).
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Proof. Tt suffices to prove the complement set C = X\Vj is closed. Therefore,
suppose v; € C' and v; — v in L™(; R™). We need to show v € C. By definition,
v € X. Since v; € X\Vj, it follows that

(2.15) /QF(va(x))dx <-1/k, Vj=1,2,....

Also, by (Z9), there exists a subsequence of {v;} (also labelled the same) weakly
convergent to ¥ in W"(2; R™); this implies v = v € 9 + Wol’"(Q; R™). Therefore,
by the lower semicontinuity of the L™-norm,

/QF(Dv(a:))da::/Q|Dv(x)|"da:—L/QdetDv(m)da:

gliminf/ |va|”da:—L/detD1pdx
Q Q

Jj—o0

= lim inf/ [F'(Dv;) + L det Dvj]dx — L/ det Dydx
Q

j—o0 Q

< liminf/ F(va)dx—f—Llimsup/ det vadx—L/ det Dydx
Q Q

j—o0 j—o00 Q

= liminf/ F(Dvj(z))dr < —1/k by (ZIH).
Q

Jj—o0

This shows v € Vj, thus v € C, proving C = X\V}, is closed, and hence Vj; is open
in (X,L"). O

The heart of the matter of using the Baire’s category method is to establish the
density of the sets Vj, which we shall do in the next section.
3. THE DENSITY OF Vj IN (X, L")

Let X and Vi be defined as above. This section is devoted to the proof of the
following crucial result for the Baire’s category method.

Theorem 3.1. V;, is dense in (X, L"™).

Proof. Assume k € N. Let v € X and € > 0 be given. We need to show there exists
u = u® € Vi such that ||u—v|[;nq) < €. This amounts to finding u® € X satisfying

(3.1) /Q F(Du(x))da > —1/k,
(3.2) [|u — o]

Ln(Q) <€
Since v € X, we can select a piece-wise affine map v; € ¥ + W&’”(Q;R”)
satisfying

oo

L) < €/2, V] = Z(fjx + bj)XQJ,

j=1

(3.3) lv —wv1]

with xs denoting the characteristic function of set S, where Q; are disjoint open
sets in €2 and &; € U such that

(3.4) ‘Q\ an

=0, Y I&"9y] = [|Dwv]

Jj=1

Z”(Q) < 0.
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Before continuing the proof, we prove the following useful result.
Proposition 3.2. Let ¥ C R"™ be a bounded open set. Assume
[€o|™ < Ldet &y < A.

Then, for any by € R™ and any § > 0, there exists a piece-wise affine map w =
w® € (Eox + bo) + Wy ™ (X R™) such that

|Dw(z)|™ < Ldet Dw(z) < A a.e. x € X,
(3.5) lw — (o + bo)|| () < 9,
J5 dist” (Dw(x); Z)dx < 6.

Proof. Step 1. We find R, @ € SO(n) such that

€n 0
€n—1 ~
So=R Q = R§Q,
0 €1
where 0 < €1 <€ < --- < €,-1 < €, satisfy
(3.6) €y < Lereg e < A

Let ¥ = Q¥ and by = R”by. o
Step 2. We claim there exists a piece-wise affine map w(y) € ({oy + bo) +

Wy >°(2; R™) such that

|Di(y)|" < Ldet Di(y) < A ae. ye,
(3.7) 10— (Eoy + B0}l s, < 0.

J5 dist™ (Dw(y); Z)dy < .
Assuming this claim, we define w(z) = Rw(Qx) for z € X. It can be easily shown
that the map w = w(x) satisfies all requirements of the proposition and the proof

is completed.
Step 3. We now prove the claim of Step 2. We start with the matrix

€n t 0
0 €n—1 0

n=mnt) = ) , te R.
0 0 €1

It can be easily seen that detn(t) = €1ea-- - ¢, for all t € R and

e +e2 | +t2+ \/(e% +€2_ | +12)2 —4de
2

SN
™

Note that f(0) = € < Ley---€, < X and f(t) — oo as [t| — oco. Therefore, there
exists a (unique) to > 0 such that

f(t) < f(£to) = Ler -+ €n, ¥Vt € (—to,t0)-
This implies
(3.8) nt=n(xto) € Z, n(t) € U, Vit e (—to,to),



4762 BAISHENG YAN

where
U= {£ e M™™ | |¢]" < Ldeté <A} C U
is a bounded open set in M"™*",

Let 0 < v < min{d,to} be any given number. Let n1 = n(—to + ) and 12 =
n(to — 7). Then, since n* € Z, it follows that

(3.9) me € UN, distin; Z2) < Im —n7 | = —nfl=v  (k=1,2)
and
fo=3(m +m) e UM
We are now in a position to use the following result.
Lemma 3.3. Let G be an open set in M™*"™ and let n € G and n = tn1 + (1 — )19

with t € (0,1) and rank(n; — n2) = 1. Then, for any b € R™ and any v > 0, there
exists a piece-wise affine map u € (nx + b) + Wy (Q; R™) such that

Du(x) € {n1,n2,13,...,Ms} a.e. x €Q,
{n3,...,ms} C G,

lu—(nz +b)l[Le@) <7,

[{z € Q[ Du(z) & {m,n2}} <.

Proof. Except for the requirement [|u — (nz 4 b)|| (o) < 7, the result is exactly
the same as [11, Lemma 3.4]; however, the requirement |[u — (nz + )| =) < ¥
follows from [L1} Lemma 3.1] of that paper. O

(3.10)

Using this lemmai, Witlg n= éo, G= U* and Q = i, we find a piece-wise affine
map ¥ = W, (y) € (§oy + bo) + WOI’OO(E; R") satisfying

Di(y) e U» ae. yey,
(3.11) |l — (Eoy + bO)HLoo(i) <7,
{y € 2| Dw(y) & {m.m2}} <.

Hence, we have the estimate
/~ dist" (Dw(y); Z)dy
b

7/ dist”(Dﬁ;;Z)dy—i—/ dist" (Dw; Z)dy
Dw(y)e{ni,m2} Dw(y)g{ni.,m2}

<AME| +9A <6

if v is sufficiently small, where we have used (3.9) and the fact that dist”(n; Z) <
In|™ < A for all n € U™,

Consequently, this w(y) satisfies the claim in Step 2. This completes Step 3 and
the proof of Proposition [3.2] O

We now continue the proof of Theorem [BIl1 For each given ;,§2; as given in
B3)-([B4), we apply Proposition [3.2] with §y = &;, by = bj, A = 2L|§;|", ¥ = Q;
and § = p/27, 0 < p < € being a number to be selected later, to obtain a piece-wise
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affine map u? € (§w +bj) + Wol’oo(Qj; R") satisfying
|Duf(z)|" < Ldet Duf(x) < 2L|&"  ae xz €3,

(312) [0 = (€52 + )l (a) < 22 <
fﬂj dist" (Duf (x); Z)dz < p/27.

Let
(o]
v = Z ufxQ; -
=1

Then v” is a piece-wise affine map in ) + Wol’”(Q; R"™) (see, e.g., [11, Lemma 1.6])
and satisfies Dv?(z) € U for almost every x € §). Therefore, v# € X. We also have

(3.13) [v" = w1l < PO,
oo
£ ( Dyl P
(3.14) / dist™(Dv?; Z)dx < Z 5 =P
Q =
oo
(3.15) JREECIREES Sy LTI
Q = /e
oo
(3.16) <D 2LIE["9] = 2L]| Dorl|Enq)-
=1

The following useful result is elementary.
Lemma 3.4. For each 7 > 0 there exists a constant C'; > 0 such that
F(&) > —71|g|™ — Cr dist™ (&, Z), V& e M™™™.

Proof. Since both F(§) and dist™ (§; Z) are homogeneous of degree n, one has only
to prove the stated inequality for all £ with || = 1. We use the contradiction
method. Suppose, for the contrary, the inequality does not hold for |£| = 1. Then,

for some 79 > 0 and all integers j = 1,2,..., there exists {; € M™*" with |;] =1
such that
(317) F(gj) S —To—jdistn(gj;Z), \V’j: 1,2,... .

Without loss of generality, assume &; — ¢ for some & with [£] =1 as j — oo. Since
F(&) — F(€) and dist™(&;Z) — dist™(§;Z) as j — oo, it follows from (B17)
that dist™(¢;Z) < 0, thus, £ € Z and F(§) = 0. However, (3I7) also implies
F(&;) < —p for all j so that F(€) < —9, which contradicts F(£) = 0. The lemma

is proved. Il

Using this lemma, we have by (3.14)), (3.19)), (3.16) that
(3.18) / F(Dv*(2))dz > —r / | Dv?(2)|"da

Q Q
(3.19) ¢, / dist” (Dv? (2): Z)da
Q

(3.20) Z _2LT||DU1| Z"(Q) - C—,—p.

To complete the proof, we select 7 > 0 such that

1
2LT||DU1||ZW(Q) < ﬁ
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and, for this 7 > 0, select p > 0 such that

1
Crp < —, Pl < €/2.

2k
Let u® = v*. Then, from (320)), we easily see

/ F(Du(x))dx > —1/k
Q

(hence u¢ € Vi) and, by 33), (313),
(3.21) |u® — ] @) + [[vr — v
(3.22) <€/2+¢/2=c¢.

Theorem Bl is finally proved. O

@) < |7 =] L™ (Q)

4. PROOF OF THE MAIN THEOREMS

In this final section, we present the proof of our main theorems. We use the
same notation as above.

Proposition 4.1. Let Si}’"(ﬂ; Z) be defined by (LT). Then
Sy 2) ﬂ Vie.

Proof. From definition (7)), S}b’”(ﬂ; Z)={v € X | F(Dv(z)) = 0}. Therefore,
Sy Z) C Vi

forall k =1,2,..., and hence Si}’"(ﬂ; Z) CMNiey Vi
On the other hand, suppose v € ﬂzil Vi. Then

/ F(Dv(x))dz > —1/k, Vk=1,2,...,
Q

and hence [, F(Dv(z))dz > 0. By Proposition B3] one also has Dv(z) € K,
ie., F(Du(z)) < 0 ae. in Q. Therefore, F(Dv(z)) = 0 and Dv(z) € Z for a.e.
x € Q, and hence v € S}b’”(ﬂ; Z). This proves (y—, Vi C S}b’”(ﬂ; Z). The result is
proved. O

Proof of Theorems and [[-3. Theorem [[.5] and hence Theorem [L.3] follow from
the Baire’s category theorem (Theorem 21]), using Lemmas 2:2H24] Theorem
and Proposition 1] O

Proof of Theorem There are two disjoint open subsets ¢ and 2 of Q such
that [Q\(Qo U Q1)| = 0 satisfying

Dy(z) € Z, ae. x € Q; Dy(z) e U, a.e. x €.

We use the existence result Theorem [[3 for the boundary value ¢ € A}P’p (Q1;0)
on 2 to obtain a solution u; € ¢ + Wol’"(Ql; R") satisfying

lur — @l <€ Dui(z) € Z a.e. x €.

Then, it is easy to see that u = u1xq, +¥Xxq, is a solution required in the theorem.
O
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