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A MODEL FOR TOTAL ENERGY OF NEMATIC ELASTOMERS

WITH NON-UNIFORM PROLATE SPHEROIDS

MARIA-CARME CALDERER, CHUN LIU, AND BAISHENG YAN

Abstract. We provide a model for the total energy of nematic liquid crystal
elastomers whose elastic solid backbones have an average shape of non-uniform

prolate spheroids along the director of crosslinked liquid crystalline molecules.
This energy is a generalization of the Oseen-Frank free energy for nematic liq-
uid crystals, but incorporates coherently the elastic deformation with changes

in the shape and the director of the network. The total free energy we ob-
tain for the elastomer is suitable for the existence of energy minimizers and
other mathematical studies of the elastomers and also provides a concrete ex-
ample that is consistent with both the continuum mechanics theory and the

molecular-statistical theory.

1. Introduction. Nematic elastomers are unusual materials that simultaneously
combine the elastic properties of rubbers with the anisotropy of liquid crystals.
They consist of polymer networks of elastic solid chains (the backbones) formed
by the cross-linking of nematic molecules (the mesogens) as the elements of their
main-chains and/or pendant side-groups. Because of this structure, any stress on
the polymer network influences the nematic order of the elastomer, and, conversely,
any change in the nematic order will affect the mechanical shape of the elastomer.
The interplay between elastic and orientational changes is responsible for many
fascinating properties of such materials that are different from the classical elastic
solids and liquid crystals. These materials have been actively studied for both
fundamental research and industrial applications; see, e.g., References [2, 4, 7, 8, 9,
11, 12, 14, 16].

The nematic elastomers we shall model in this paper have a common feature
that the average shape of backbone nematic polymer is a prolate spheroid with
the nematic director as its long axis. Such an elastomer can be formed in two
steps: First, in the melt the material is an isotropic elastic rubber with no defined
orientation. Under some preferred procedures (via applied fields or temperature
change) the nematic chooses an initial shape of a spheroid with a fixed direction n0

and asphericity q0 ≥ 1 (i.e., the aspect ratio of lengths parallel and perpendicular
to the spheroid axis n0). Then, the network undergoes a deformation y from the
reference domain to a current domain where the nematic takes a shape of a new
shape of prolate spheroid at a deformed point z with axis ñ(z) and asphericity q̃(z).
We assume the elastic deformation is incompressible and the shape spheroids are
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all prolate in the direction ñ(z); this is to assume the asphericity q̃(z) ≥ 1 at all
points z in the current configuration.

In this paper we provide a model for the total free energy of the elastomer
that consists of three contributions: (1) the nematic elastic energy due to the
anisotropy of the elastic solid backbone, (2) the asphericity energy that, to some
extent, memorizes the initial spheroid shape of the network, and, (3) the Oseen-
Frank penalty energy due to the coupling of non-uniform nematic orders and elastic
deformations. This last part of the energy has been usually ignored in the study
of nematic elastomers ([4, 7, 9, 11]). We stress that our main contribution here
is to provide a mathematically workable and physically sound theory for the total
energy of the elastomer that includes the reasonable Oseen-Frank penalty energy
for the cross-linking and that, like Ericksen’s theory for nematic liquid crystals (see
[10, 13, 15]), our model permits the defects in the elastomer network.

We now outline the plan of this paper. In section 2, we introduce the physical
quantities that describe the nematic elastomers we want to model. In particular, we
introduce the shape parameters that combines both the director and the asphericity
of the prolate spheroid. In section 3, we build up our mathematical model for the
total free energy of the nematic elastomer network that includes three contributions:
the nematic elastic energy, the asphericity energy, and the modified Oseen-Frank
penalty energy. We remark that our theory is consistent with both the continuum
mechanics theory and the molecular-statistical theory. In final two sections of the
paper, sections 4 and 5, we discuss the variational properties of our total free energy
functional and the existence of energy-minimizers. We omit most of the details here
and refer to [5] for proofs and more discussions.

2. Physical State Variables and Shape Parameters. We first introduce the
physical variables that describe the nematic elastomer and then define some new
variables that will be used in our theory.

2.1. The state variables. The nematic elastomer modeled here can be described
by the following state variables.

(a) Elastic deformation z = y(x), where x ∈ Ω, the reference (Lagrangian) do-
main, z ∈ D, the current (Eulerian) domain. The incompressibility of the elastomer
network requires that the deformation gradient F = ∇y satisfy

det∇y(x) = 1, ∀x ∈ Ω. (2.1)

(b) Nematic director ñ = ñ(z) of the average axis of the crosslinked nematic
mesogenic groups (rod-like segments) after deformation; this is a unit vector in R3,
that is,

|ñ(z)| = 1. (2.2)

For the nematic elastomers we study here, ñ coincides with the principal axis of
the shape spheroid of the elastic solid backbone.

(c) Current shape of the spheroidal elastic solid backbone of the nematic elas-
tomer. The asphericity q̃ = q̃(z) of the spheroidal backbone is the ratio of lengths
parallel and perpendicular to the principal axis (which is ñ(z)) of the current spher-
oid shape. For prolate spheroids, q̃(z) ≥ 1. The shape of the spheroid can be

described by the so-called step-length tensor L̃, which is given by matrix

L̃ = l⊥I + (l‖ − l⊥)ñ ⊗ ñ = l⊥(q̃)[I + (q̃ − 1)ñ ⊗ ñ], (2.3)
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where q̃ = l‖/l⊥ is the asphericity, and we have assumed the perpendicular length
l⊥ = l⊥(q̃) is a function of asphericity q̃ only. In this case the current shape is

completely described by the step-length tensor; that is, L̃ = L̃(q̃, ñ).
(d) Initial shape of the nematic elastomer formed at the crosslinking. We assume

this shape is constant and given by matrix

L0 = l0[I + (q0 − 1)n0 ⊗ n0], (2.4)

with constant numbers l0 > 0, q0 > 1 and unit vector n0.

2.2. The current shape parameter and material defects. For unit director
ñ and prolate asphericity q̃ ≥ 1 we introduce the shape parameter d̃ = d̃(z) by

d̃ =
√

q̃ − 1ñ. (2.5)

Using this new shape parameter d̃ we can write the step-length tensor L̃ above as

L̃ = L(d̃) = a(|d̃|)(I + d̃ ⊗ d̃), (2.6)

where a(s) > 0 is a given function satisfying

| ln a(s)| ≤ a0s
r + a1, ∀ s ≥ 0 (2.7)

for some constants a0, a1 and 1 ≤ r < 6. In [5], we have used a(s) = (1 + s2)−1/3

to assure the condition detL(d̃) = 1; but we don’t need this condition here.

Notice that one can always recover q̃ from d̃ through q̃ = 1 + |d̃|2. However, one

can recover ñ from d̃ only when d̃ 6= 0, in which case ñ = d̃

|d̃|
. Note that when

d̃ = 0 and hence q̃ = 1, the backbone shape is a sphere and the elastomer is in the
isotropic solid phase and has no orientation preference; in this case, we consider
the elastomer has a material defect. In this aspect, our theory is similar to that
of Ericksen’s on the nematic liquid crystals with variable degree of orientation (see
[10, 15]). Under our theory, the defect set of the nematic elastomer is determined

by the points of z where d̃(z) = 0.

2.3. The reference shape parameter. Given elastic deformation z = y(x) and

shape parameter function d̃(z), define the reference shape parameter d = d(x) by

d(x) = d̃(y(x)). (2.8)

If y is one-to-one, then this equation also uniquely defines d̃(z) from d(x). However,

if y is not injective, one cannot always recover d̃ from d; but this problem can be
overcome both mathematically and physically. We intend to address this issue
elsewhere. (See also Remarks 3.2 and 3.3 below.)

In the following, we assume the deformation y is one-to-one and use y and the
(independent) reference shape parameter d as the state variables for modeling the
total energy of the elastomer network. One advantega of using the non-physical
d(x) instead of the true shape parameter d̃(z) is that d(x) and y(x) are now both
functions on the reference domain Ω.

3. The Mathematical Model for Total Free Energy. The total free energy
of the nematic elastomer consists of three contributions: the nematic elastic energy,
the asphericity energy, and finally the Oseen-Frank penalty energy due to the non-
uniform distribution of the nematic order. Before we build up these energies, we
first introduce some notation, some of which has been already used before.
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3.1. Notation. Let M3×3 denote the space of 3 × 3 matrices with standard inner
product and Euclidean norm. The components of matrix P ∈ M3×3 are written as
Pij with 1 ≤ i, j ≤ 3. Given vectors a, b ∈ R3, a ⊗ b will denote the (rank-one)
matrix in M3×3 with components (a⊗b)ij = aibj . For P ∈ M3×3, denote by detP
the determinant of P and adjP the cofactor matrix of P that satisfies

P (adjP ) = (adjP )P = (detP )I ∀ P ∈M3×3.

In particular, if P is invertible (i.e., detP 6= 0), we have

(detP )P−1 = adjP. (3.1)

Let Ω be a bounded domain in R3. For a Sobolev function u : Ω → R3 we denote by
∇u(x) the Jacobi matrix of u as a 3× 3 matrix whose elements are defined almost
everywhere in x ∈ Ω by the weak partial derivatives:

(∇u)ij =
∂ui

∂xj
, i, j = 1, 2, 3.

3.2. The nematic elastic energy. Following [4, 16], the ideal nematic elastic
free energy is obtained from a molecular-statistical theory and is given by an energy
density function that is a simple extension of the classical isotropic Gaussian elas-
ticity. From this, the nematic elastic energy density is given by the so-called trace
formula:

Eel = Eel(d, F ) =
µ

2

[

tr(L0F
TL−1F ) − ln

detL0

detL
− 3

]

, (3.2)

where µ > 0 is an elasticity constant of the network, L0 and L = L(d) are the
step-length tensors defined above by (2.4) and (2.6). Note that L0 = L(d0), where
d0 = (q0 −1)1/2n0 6= 0 is a constant vector. The additive constant 3 in the formula
is to assure the lowest energy is zero (see below).

Let A0 = L
1/2
0 and B(d) = L−1/2 = L(d)−1/2. Then we can write

Eel(d, F ) =
µ

2

[

|B(d)FA0|
2 − 2 ln det(B(d)A0) − 3

]

. (3.3)

Therefore, for any given d, Eel(d, F ) is convex in F ; moreover, for all F with
detF = 1, one can show that Eel(d, F ) ≥ 0, and that Eel(d, F ) = 0 if and only if
B(d)FA0 ∈ SO(3); that is,

F ∈ U(d) ≡ B(d)−1SO(3)A−1
0 , (3.4)

where SO(3) is the set of all rotations in R3 with determinant 1. U(d) is the
so-called energy-well (see, e.g., [5, 9]).

Suppose now y(x) is an elastic deformation which deforms the reference domain

Ω to the current domain D and at each point z ∈ D the shape parameter d̃(z) of the
nematic elastomer is given. Throughout the paper we assume the reference domain
Ω is a bounded open domain with Lipschitz boundary Ω in R3. Let d(x) = d̃(y(x))
be the reference parameter. Then the nematic elastic energy is defined by

Eel = Eel(d,y) =

∫

Ω

Eel(d(x),∇y(x)) dx. (3.5)
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3.3. The asphericity energy. We postulate that after deformation the nematic
elastomer penalizes the change of asphericity except for the isotropic sphere case
and remembers only the initial asphericity constant. The total asphericity energy
is given by

Ẽasph = Ẽasph(d̃) =

∫

D

Φ(|d̃(z)|) dz, (3.6)

where Φ(s) is a continuous function satisfying, for some constants c0 > 0, c1 > 0
and 1 ≤ p < 6,

max{0, c0|s|
2 − 1} ≤ Φ(s) ≤ c1(|s|

p + 1), (3.7)

Φ(s) = 0 ⇐⇒ s = |d0| or s = 0. (3.8)

The growth condition (3.7) and the similar one (2.7) on function a(s) above will
be used in the proof of existence of energy-minimizers later. The usual Ginzburg-
Landau type of double-well functions can be chosen as such a Φ. For instance,

Φ(s) = s2(s− |d0|)
2.

3.4. The modified Oseen-Frank curvature energy. For a nematic elastomer
in the current configuration D, we use a modified Oseen-Frank curvature energy to
penalize the spatial change of the shape parameter d̃ wherever d̃(z) 6= 0.

3.4.1. The Oseen-Frank curvature energy. In general, in the absence of applied
fields, the total Oseen-Frank curvature energy for unit vector field ñ(z) is given by
the integral

∫

D

Ψñ(z) dz,

where the energy density Ψñ(z) is defined by

Ψñ = k1(divñ)2 + k2(ñ · curlñ)2 + k3|ñ × curlñ|2 + k4[tr(∇ñ)2 − (divñ)2] (3.9)

with the Frank constants k1, · · · , k4. The terms with k1, k2 and k3 represent the
corresponding splay, twist and bend curvature energies, respectively; the k4-term is
a null-Lagrangian representing the surface energy contribution. (See, e.g., [10, 13,
15].)

There is a way to write Ψñ as a function of ñ and ∇ñ. To do so, we define the
Oseen-Frank energy density function W(n, P ) as follows.

W(n, P ) = W0(n, P ) + k4N(P ), (3.10)

W0(n, P ) = k1(trP )2 + k2(n · ax(P ))2 + k3|n × ax(P )|2, (3.11)

N(P ) = tr(P 2) − (trP )2, (3.12)

where, for each matrix P ∈ M3×3, the vector ax(P ) ∈ R3 denotes the axial vector
of the matrix P , which is uniquely defined through the identity

(P − PT )v = ax(P ) × v, ∀ v ∈ R3. (3.13)

For a smooth vector field m̃ : D → R3, one can easily check that

tr(∇m̃) = divm̃, ax(∇m̃) = curlm̃.

Hence one has
Ψñ(z) = W(ñ(z),∇ñ(z)).

For unit vectors n, |n| = 1 we have the identity

|P |2 = (trP )2 + (n · ax(P ))2 + |n × ax(P )|2 +N(P ). (3.14)
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Therefore if k2 = k3 then W0(n, P ) depends only on P.
Throughout this paper, we assume

κ = min{k1, k2, k3} > 0. (3.15)

It is easily seen that, for |n| = 1,

κ|P |2 ≤ W(n, P ) + (κ− k4)N(P ). (3.16)

If k1 = k2 = k3 = k4 = κ > 0, one obtains the so-called one-constant Oseen-Frank
energy formula:

W(n, P ) = κ|P |2. (3.17)

3.4.2. Extending the Oseen-Frank energy function. We extend the function W(n, P )
to arbitrary vectors d. We use a simple extension to penalize the directional changes
of d only; the penalty for |d| is already included in the asphericity energy defined
above. Define

K(d, P ) = W(ω(d), P ); ω(d) =

{

d/|d| if d 6= 0,

n0 if d = 0,
(3.18)

where n0 = d0/|d0| is the initial constant director as above. Note that the assump-
tion K(0, P ) = W(n0, P ) reflects a postulation that the elastomer may have some
memory of its initial director when the current shape is isotropic.

3.4.3. The modified Oseen-Frank energy. We define the modified Oseen-Frank en-
ergy for shape parameter d̃(z) by

ẼOF = ẼOF (d̃) =

∫

D

K(d̃(z),∇d̃(z)) dz (3.19)

with the density function K(d, P ) defined above.

3.5. The total free energy and the reference energy density function. For
the total free energy of the nematic elastomer network we simply add the three
energies defined above. So the total free energy is

Etotal = Eel + Ẽasph + ẼOF . (3.20)

To derive the total free energy density function in the reference configuration,
we need to write

Etotal = Etotal(d,y) =

∫

Ω

fd,y(x) dx (3.21)

and determine the density fd,y as a function of d,y,∇d,∇y.
As mentioned above, we assume y : Ω → D is a bi-Lipschitz map. We associate a

function d̃ : D → R3 to a function d : Ω → R3 by d(x) = d̃(y(x)) and, vice versa,

a function d : Ω → R3 to a function d̃ : D → R3 through d̃(z) = d(y−1(z)). Note
that

∇d(x) = ∇d̃(y(x))∇y(x)

and hence
∇d̃(z) = ∇d(x)(∇y(x))−1.

We can change all the energy integrals on current domain D to the integrals on the
reference configuration Ω by the (bi-Lipschitz) coordinate change z = y(x). Since
det∇y(x) = 1, we have

ẼOF = EOF (d,y) =

∫

Ω

K(d(x),∇d(x)(∇y(x))−1) dx
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and

Ẽasph = Easph(d,y) =

∫

Ω

Φ(|d(x)|) dx.

Therefore, we have the total energy is given by

Etotal = Etotal(d,y) =

∫

Ω

fd,y(x) dx =

∫

Ω

ψ(d,∇y,∇d) dx, (3.22)

where the density function

fd,y(x) = ψ(d(x),∇y(x),∇d(x))

is given by total free energy density function ψ = ψ(d, F,G) defined by

ψ(d, F,G) = Eel(d, F ) + Φ(|d|) + K(d, GF−1), (3.23)

with Eel,Φ and K defined as above. The state variables (d, F,G) for this free energy
density function ψ are

d ∈ R3, F, G ∈M3×3 with detF = 1. (3.24)

3.6. A few remarks about our total energy formula.

Remark 3.1. We derived the total energy formula (3.22) under the assumption that
y : Ω → D is a bi-Lipschitz map. However, our final formula (3.22) or (3.23) makes
no requirement that the deformation y be one-to-one from Ω onto D = y(Ω). So
we can use this total energy formula for all d and y.

Remark 3.2. Mathematically, the injectivity of the deformations in nonlinear elas-
ticity has been addressed in Ball [3] and Ciarlet & Nečas [6] and can be guaran-
teed either by a pure displacement (Dirichlet) boundary condition with one-to-one
boundary data [3] or by imposing an inequality condition [6], which in our case
(det∇y(x) = 1) reduces simply to the condition: |Ω| ≤ |y(Ω)|.

Remark 3.3. There may be still a way to recover the current shape parameter d̃(z)
by restricting the admissible class to a subset of the joint class C of (d,y) defined
by

C = {(d,y) |y ∈W 1,∞(Ω;R3), d(x) = d̃(y(x)) ∃d̃ ∈W 1,2(y(Ω);R3)};

this is equivalent to requiring d be constant on each level set of y.

Remark 3.4. Our density function ψ(d, F,G) defined by (3.23), when restricted to
the unit vectors d ∈ S2, satisfies all the frame-indifference and material symmetry
properties of the continuum mechanics theory as required in Andersen et al [2] for
their density functions (cf. (4.38), (4.49) and (4.52) in [2]):

ψ(Rd, RF,RG) = ψ(d, F,G) ∀R ∈ SO(3), (3.25)

ψ(d, FQ,GQ) = ψ(d, F,G), ∀Q ∈ SO(3) with Qd0 = d0, (3.26)

ψ(−d, F,−G) = ψ(d, F,G). (3.27)

Therefore, our energy density function is also consistent with the continuum me-
chanics theory.

Remark 3.5. For the one-constant Oseen-Frank energy model, our modified Oseen-
Frank energy density reduces to κ|∇d(∇y)−1|2 and the model used in [2] reduces
to the density κ|∇yT∇d|2. In this case, the advantage of our model is that this
part of energy density is lower semicontinuous under a weak convergence of the
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state variables (d,y) and so is compatible with the existence of energy-minimizers,
while the one used in [2] is not.

Remark 3.6. One can assume the initial shape is an isotropic sphere; that is A0 = I.
To see this, let detA0 = α3, α > 0. By a linear change of coordinate x = A0x̂ with

x ∈ Ω and x̂ ∈ Ω̂ and the change of any function f(x) to f̂(x̂) by αf̂(x̂) = f(x), we
deduce

Etotal(d,y) = Êtotal(d̂, ŷ) = α3

∫

Ω̂

ψ̂(d̂,∇ŷ,∇d̂) dx̂, (3.28)

where the new energy density function ψ̂(d̂, F̂ , Ĝ) is given by

ψ̂(d̂, F̂ , Ĝ) =
µ

2

[

|B̂(d̂)F̂ |2 − 2 ln det B̂(d̂) − 3
]

+ Φ̂(|d̂|) + K(d̂, ĜF̂−1) (3.29)

with the new functions B̂, Φ̂, and K̂ given by

B̂(d̂) = αB(αd̂), Φ̂(s) = Φ(αs), K̂(d̂, P̂ ) = K(d̂, P̂ ),

where B(d),Φ(s) and K as the same functions as defined above. An interesting fact

is that K̂ remains the same as K. Note that the information on d0 is still encoded
in the asphericity energy function Φ̂(|d|) and, of course, also in K̂(d̂, P̂ ).

In the rest of the paper, we shall assume A0 = I, so the density function

ψ(d, F,G) is similar to ψ̂ above.

4. Variational Properties of the Total Energy. By (3.1) above, the free en-
ergy density ψ above can be write

ψ(d, F,G) = Eel(d, F ) + Φ(|d|) + K(d, GadjF ). (4.1)

For all P ∈M3×3, one also has

N(P ) = −2tr(adjP ). (4.2)

Since the map ax: M3×3 → R3 defined by (3.13) above is linear, and constants
k1, k2, k3 are all positive, the function W0(n, P ) (in the definition of W(n, P )) is
convex in P for any given n ∈ R3. Hence, for any P,Q ∈ M3×3,

W0(n, P +Q) ≥W0(n, P ) +
∂W0

∂P
(n, P ) : Q. (4.3)

4.1. Compensated compactness and lower semicontinuities. The total en-
ergy Etotal(d,y) contains terms like ∇d(x)adj∇y(x). Such terms have some com-
pensated compactness property and we list the following two theorems and refer to
[5] for the proof and more discussions.

Theorem 4.1. Let fν ∈W 1,∞(Ω;R3) and gν ∈W 1,2(Ω;R3) satisfy

fν ⇀ f̄ weakly * in W 1,∞, gν ⇀ ḡ weakly in W 1,2.

Then it follows that

adj∇fν ⇀ adj∇f̄ weakly * in L∞(Ω;M3×3), (4.4)

∇gνadj∇fν ⇀ ∇ḡadj∇f̄ weakly in L2(Ω;M3×3), (4.5)

and therefore
∫

Ω

|∇ḡadj∇f̄ |2 dx ≤ lim inf
ν→∞

∫

Ω

|∇gνadj∇fν |
2 dx.
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Theorem 4.2. Let yν ∈W 1,∞(Ω;R3) and dν ∈W 1,2(Ω;R3) satisfy

yν ⇀ ȳ weakly * in W 1,∞, dν ⇀ d̄ weakly in W 1,2.

Let Φ(|d|), W0(n, P ) and ω(d) be the functions defined above. Then one has
∫

Ω

Φ(|d̄|) dx ≤ lim inf
ν→∞

∫

Ω

Φ(|dν |) dx, (4.6)

∫

Ω

W0(ω(d̄),∇d̄adj∇ȳ) ≤ lim inf
ν→∞

∫

Ω

W0(ω(dν),∇dνadj∇yν). (4.7)

4.2. The null-Lagrangian term and coercivity of the energy. In view of
(4.2), the null-Lagragian term N(P ) in W(n, P ) has the following property.

Theorem 4.3. Let f1, f2 ∈W 1,∞(Ω;R3) and g1, g2 ∈W 1,2(Ω;R3) with

det∇fi(x) = 1 a.e. x ∈ Ω, (i = 1, 2)

satisfy f1 = f2 and g1 = g2 on the boundary ∂Ω in the sense of trace. Then
∫

Ω

N(∇g1adj∇f1) dx =

∫

Ω

N(∇g2adj∇f2) dx. (4.8)

From this theorem and (3.16), we easily have the following coercivity result.

Theorem 4.4. Assume κ = min{k1, k2, k3} > 0. Then

κ

∫

Ω

|∇d(∇y)−1|2 dx ≤

∫

Ω

K(d,∇d(∇y)−1) dx+ C(d1,y1) (4.9)

for all d ∈ W 1,2(Ω;R3), y ∈ W 1,∞(Ω;R3) with det∇y(x) = 1 a.e. and d|∂Ω =
d1, y|∂Ω = y1, where d1 ∈W 1,2(Ω;R3) and y1 ∈W 1,∞(Ω;R3) with det∇y1(x) =
1 a.e. are given functions, and C(d1,y1) is a constant only depending on d1, y1.

5. Existence of Energy Minimizers. We study the minimization problem for
the total nematic elastomer energy given above by

Etotal(d,y) =

∫

Ω

ψ(d,∇y,∇d) dx

with ψ defined by (3.23) above or equivalently by (4.1).

5.1. Admissible classes. The natural admissible class for the reference shape
parameter d is the Sobolev space

D = W 1,2(Ω;R3).

The natural class for deformation y is all the volume-preserving Lipschitz maps.
However since we can not have a priori bounds on the Lipschitz constant or the
W 1,∞-norm of y, we have to assume such a bound in advance. So we define the
admissible class of deformations to be the volume-preserving Lipschitz maps with
a given uniform Lipschitz constant Λ > 0. Let

Y = {y ∈W 1,∞(Ω;R3) | det∇y(x) = 1 a.e.}, (5.1)

YΛ = {y ∈ Y | ‖∇y‖L∞(Ω) ≤ Λ}. (5.2)
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5.2. Minimization with given Dirichlet boundary conditions. Let d̄ ∈ D,
ȳ ∈ YΛ be given. We define the following admissible Dirichlet classes for shape and
deformation with given boundary anchoring:

Dd̄ = {d ∈ D |d|∂Ω = d̄}, (5.3)

YΛ,ȳ = {y ∈ YΛ |y|Ω = ȳ}. (5.4)

For simplicity, we denote A1 = Dd̄ × YΛ,ȳ. The strong and weak convergences in
these Dirichlet classes will be those induced by the same convergence in the Banach
space W 1,2 ×W 1,∞. We easily see that they are sequentially compact in the weak
topology.

We prove the following existence result.

Theorem 5.1. Assume Etotal is defined by (3.22) and (3.23). Let Λ < ∞. Then
there exists a minimizer (d∗,y∗) ∈ A1 such that

Etotal(d
∗,y∗) = min

(d,y)∈A1

Etotal(d,y).

Proof. The proof follows a standard direct method of the calculus of variations.
Let (dν ,yν) ∈ A1 be a minimizing sequence; that is,

Eν = Etotal(dν ,yν) → E0 = inf
(d,y)∈A1

Etotal(d,y).

1. Without loss of generality, we assume yν ⇀ y∗ weakly * in W 1,∞(Ω;R3).
Then y∗ ∈ YΛ,ȳ.

2. We derive a bound on {dν}. By (4.9), we have {∇dνadj∇yν} is bounded in
L2(Ω;M3×3). Note that, for E, F ∈ M3×3 with detF = 1 and |F | ≤ Λ, it follows
that

|E| ≤ |F ||EF−1| ≤ Λ|EadjF |. (5.5)

This gives a uniform L2-bound on {∇dν}. Since dν ∈ Dd̄, this implies {dν} is
bounded in W 1,2(Ω;R3). Without loss of generality we assume that dν ⇀ d∗

weakly in W 1,2(Ω;R3) and d∗ ∈ Dd̄.
3. From (3.3) and the growth conditions (2.7) and (3.7), we see that the term

ψ1(d, F ) = Eel(d, F ) + Φ(|d|) in the total free energy density function ψ is a non-
negative convex function in F and hence, by a theorem in [1], the corresponding
energy is weakly lower semicontinuous in the class A1. By Theorems 4.2 and 4.3,
the whole energy Etotal is also weakly lower semicontinuous in this class A1.

4. Finally, by the lower semicontinuity established above, we have

Etotal(d
∗,y∗) ≤ lim inf

ν→∞
Etotal(dν ,yν) = E0.

This shows that (d∗,y∗) ∈ A1 is a minimizer.

5.3. The one-constant formula of total energy. In many situations, we need
to minimize the total energy with the shape parameter fluctuating freely with-
out anchoring to the boundary. In such cases, we do not have control on the
null-Lagrangian term N(P ) in K(d, P ) for general choices of the Frank elasticity
constants ki. In what follows, we will use the one-constant formula for K(d, P ), and
therefore, only consider the simplified energy functional

I(d,y) =

∫

Ω

[

Eel(d,∇y) + Φ(|d|) + κ|∇d(∇y)−1|2
]

dx (5.6)

with κ > 0.
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5.3.1. Asphericity control. We define, for given constants 0 ≤ θ1 ≤ θ1 ≤ ∞, the
class of asphericity-controlled shape parameters

D1 = Dθ1,θ2
= {d ∈W 1,2(Ω;R3) | θ1 ≤ |d(x)| ≤ θ2 a.e.}.

Note that, in this notation, D = D0,∞ and D1,1 = W 1,2(Ω;S2).

5.3.2. Effective elastic response energy. For given y, we introduce an effective elas-
tic response energy due to the shape fluctuation in D1 by

J (y) = Jθ1,θ2
(y) = inf

d∈D1

I(d,y) = min
d∈D1

I(d,y). (5.7)

The fact that the minimum in (5.7) is attained can be proved easily by the direct
method in a similar way as in Theorem 5.1 above. Due to the property of asphericity
energy density function Φ(|d|) assumed before, the energy-well of response energy
J (y) = Jθ1,θ2

(y) (i.e., the set of y with J (y) = 0) will depend heavily on the
values of θ1 and θ2 (see [5] for more).

5.3.3. Continuities of the response energy. We list the following properties of the
effective elastic response energy defined above and refer to [5] for details and more
discussions. Note that the results listed below hold for all 0 ≤ θ1 ≤ θ2 ≤ ∞.

Theorem 5.2. The energy J : Y → R+ is continuous in the strong topology and
lower semicontinuous in the weak * topology of Y; namely,

J (ȳ) ≤ lim inf
ν→∞

J (yν) ∀ yν ⇀ ȳ weakly * in Y, (5.8)

J (ȳ) = lim
ν→∞

J (yν) ∀ yν → ȳ strongly in Y. (5.9)

Moreover, if yν → ȳ strongly in Y and let dν ∈ D1 be any minimizer of J (yν); that
is, J (yν) = I(dν ,yν). Then {dν} has a subsequence {dνj

} strongly converging in

D to a minimizer d̄ of J (ȳ).

From this result, one easily obtains the following existence theorem.

Corollary 5.3. Let Y1 be either the class YΛ or a Dirichlet class YΛ,ȳ with Λ <∞.
Then there exists a y∗ ∈ Y1 such that

J (y∗) = min
y∈Y1

J (y) = min
(d,y)∈D1×Y1

I(d,y).
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