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1. Introduction

The use of reverse Holder inequalities pioneered by Gehring’s celebrated lemma
[5] in the theory of quasiconformal mappings has been well adapted in the cal-
culus of variations for obtaining regularity of minimizers of integral functionals
with certain natural growth conditions [6]. In this paper we elaborate upon some
ideas of our recent paper [16] to prove a theorem on improving regularity of min-
imizing sequences of a family of integral functionals that do not satisfy the usual
growth conditions but satisfy instead a uniform integral coercivity condition as
given by (1.4) below. As an important application, we also prove a stability result
on the strong convergence of the so-called weakly almost conformal mappings in
WLP(Q; R") for certain p below the dimension n. See also [4; 7; 11; 13; 14; 16].

We begin with some notation. Let M™*™ be the space of all real n x m-matrices
with norm | X| defined by | X|?> = tr(X7X). For p > 1 and a domain D in R™,
let W!P(D; R") be the usual Sobolev space of LP-integrable maps u: D — R”
having LP-integrable gradients (Vu);; = du'/dx; for1 <i <nand1 < j <m.

Let K be a closed subset of M™*”  and let dic(X) = inf4cxc|X — A| be the
distance function to K. In this paper, we shall always assume that dic satisfies the
following condition:

dc(AX) < Ko(dx(X)+1), XeM™™ 0<i<l. (1.1)

Note that condition (1.1) is satisfied if K is a cone or a bounded set.
We consider the integral functionals 1,(u; D) defined by

I,(u; D) = /Ddfé(Vu(x)) dx. (1.2)

The natural admissible space for I,(u; D) is WLP(D; R"), but we shall often
consider I,(u; D) for all u € Wi;1(D; R").

Throughout this paper, we assume that 1 < o < 8 < o0 are given numbers,
that € CC Dy are bounded smooth domains in R™, and that ¢ is a given map in
Wl2(Do; R") satisfying
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Viuog(x) € K a.e. x € Dyg. (1.3)

We shall also assume that K satisfies the following condition.

UNIFORM INTEGRAL COERCIVITY. There exist constants Iy > 0 and I'; > 0 de-
pending on n, «, B, and K such that, for every ball B C R™,

fB d2.(V$) > Ty [B (V$|” —T1) Vpela, Bl, $cCP(B;RY.  (14)

We remark that condition (1.4) is satisfied for all compact sets K. Note also that
from (1.4) one easily sees that, for any bounded domain D and ¢ € C3°(D; R"),

/Dd;’é(vqﬁ) > I‘o/DIWpr—(FoFl + dx.(0))|B| (1.5)

for all p € [«, B] and balls B containing D.
The main result of this paper is the following theorem.

THEOREM 1.1. There exists a constant & > 0 depending only onn, «, B, and K
such that, for any sequence {u;} in Wbe(Q; R") that converges weakly to uy and

satisfies lim;_, o I,(u;; Q2) = 0, there exist a sequence {v} in Wllo’cﬁ +E(D0; R")
and a subsequence {u;, } such that vy = ugin Do\ Q, vy — ugin Wllo’c‘B H(DO; R"),
and

lim (Iﬁ+§(vk; Dy) + / |Vu, — Vu;, I) = 0. (1.6)
k—o0 Q

REMARKS. (1) The new sequence {v;} is not only a minimizing sequence of the
functional I, (u; €2) but also a minimizing sequence for all functionals 7, (u; €2)
with p € [a, B + £]; moreover, it has a higher integrability than {u;}.

(2) From this theorem we obtain that the uniform LP-coercivity (1.4) implies
a higher regularity for solutions of first-order system (1.3) in Wﬁ,’c"‘(Do; R"), that
is, ug € Wﬂ,’cﬂ +E(Do; R™). Also, by the Sobolev embedding, if 8 > n then the
sequence {vi} can be chosen in the Holder space C ,%c” (Dg; R™) for some p €
O, 1).

(3) As an important application, we shall prove a new strong convergence the-
orem (Theorem 5.1) for the weakly almost conformal mappings in W' 7(£2; R")
with certain p < n. See also [11].

The paper is organized as follows. In Section 2 we prove a preliminary lemma that
will be used in later sections. In Section 3, we use a version of Ekeland’s variational
principle and Caccioppoli-type estimates to obtain the reverse Holder inequality
with increasing supports; then a higher regularity follows from the well-known
Gehring’s lemma. We then prove the main result, Theorem 1.1, in Section 4. Fi-
nally, we give an application in Section 5 by proving a strong convergence for the
weakly almost conformal mappings.

ACKNOWLEDGMENTS. The authors would like to acknowledge stimulating dis-
cussions with Michael Frazier regarding the reverse Holder inequality. We also
thank the referee for many useful suggestions.
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2. A Useful Lemma

Before we proceed with the proof of Theorem 1.1, we prove the following useful
lemma.

LEMMA 2.1. Let p > 1, and let {u;} be a sequence in WLP(Q; R?) that con-
verges weakly to u and satisfies lim;_, o0 Ip(uj; §2) = 0. Suppose the weak limit u
extends to a map in WHP(D; R") for some D with Q CC D that satisfies Vu(x) €
K for a.e. x € D. Then, there exist a sequence {wy} in W'P(D; R") and a sub-
sequence {u; } such that wy = u in D \ Q, wy — u weakly in wLr(D; RY),

and
-2

k
I, (wg; D) ‘I'/'V”jk — Vwg| < = Vk=1,2,....
Q
Proof. The proof is standard. Let Q; = {x € Q | dist(x, 9S2) > 1/k}. Let n; be
a C*°-cutoff function satisfying supp nx C €2 and
O<m=<1, m|g =1 1Vl =<Ck

By the Sobolev embedding theorem, u#; — u in LP(£2); thus we can choose a
subsequence {u;,} such that, forallk =1,2,...,

(1 + [Vaelloo) Ny, — ullLr@y < 1/k. (2.1)
Let wy = nruj, + (1 — nr)u. Note that

Vuj, in Q,
Vwp = § meVuy, + (j, —u) @ Vi + (1 — )V in Q\ g, (2.2)
Vu in D\ £,

where a ® b stands for the rank-1 matrix (a;b;). It is easy to see that {|Vwy]|}
is bounded in L?(D) and also equi-integrable in the case when p = 1. Hence
wr — u in WHP(D; R") and fQ[Vujk — Vwy| — 0 as k — oo. Furthermore, by
(1.1), wehave dx (AX +Y) < Kodic(X) + Ko+ |Y| for 0 < A <1 and thus
I (wy; €2\ $2¢)
< Cp(lp(ujk; Q) + ”Vnk"go"ujk - ””ip(g) + ”V”"Zp(gz\gk) + 12\ le):

which, by (2.1), implies that I,(wy; D) — 0 as k — oo. Finally, the lemma fol-
lows by choosing a subsequence of {wy}. ]

CorOLLARY 2.2. Suppose 0 € K and I'1 = 0 in (1.4). Let uj be as given in

the previous lemma, and let p € [«, B]. Then u; — u strongly in Wllo‘cp (2; R")
provided that Vuj(x) — Vu(x) a.e. in 2.

Proof. Let Q' CC Q be given and let k > 1 so that Q' C Q. Since p € [«, B]
and wy — u € W,'P(€2; R"), by (1.5) we have

f |Viej, — Vul|? < f]V(wk —u)l? < Fo_ll d,’é(Vwk — Vu). 2.3)
Q Q Q
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It is elementary to see that
fie = 27(dE(Vwy) + |Vul?) — dE.(Vwy — Vi)

is nonnegative and tends to 27|Vu|? a.e. in Q as k — oo if Vu; — Vi a.e. in Q.
Thus, by Fatou’s lemma, one easily deduces that

lim supf dg(Vwy — Vi) = 0,
Q

k—o00

which by (2.3) implies that #; — u strongly in Wllo’cp (£2; R"), since one can start
with any subsequences of {u;}. i

3. A Variational Principle and Higher Regularity

Let D be a domain in R™ and let u be amap in W' ?(D; R"). We define a complete
metric space (V, p) by V =V, p and p = pp, where

Vup = {u+ LW DIRY) o) = [ [Vw-wl. ()
D

Then, by Fatou’s lemma, the functional I, (v; D) islowersemicontinuouson (V, p)
for all p > 1. The following variational principle and higher regularity result are
crucial for proving our main theorem.

LEMMA 3.1.  For any wy € V with I,(wy; D) < inf,ey I,(v; D) + k=2/2, there
exists a by € V such that I,(by; D) < I,(wy; D), p(by, wi) < 1/k, and

1,(by; D) < L,(w; D) + k™ p(w,by) YweV, w#by. (3.2)

Proof. This lemma is a special version of a general Ekeland’s variational princi-
ple [3]; see [2, Thm. 4.2]. d

Note that it is a direct consequence of the coercivity condition (1.5) that if p €
[a, B] then sequences {wy} and {b;} in Lemma 3.1 are both uniformly bounded in
Wip(D; R"). Furthermore, we have the following theorem.

THEOREM 3.2. There exist €, > 0 and integer N,, depending onlyonn, o, B, and
K such that, if p € [«, B), the sequence {b;} determined in the previous lemma
must then satisfy

sup [ |VB|Pt*" <00 VD’ Ccc D. (3.3)
k>N, J D’

Proof. We first prove that the reverse Holder inequalities

Vb |?
Br

(nt+p)/n
< ﬁ,,( ][ |ka|f’"/<"+f’)) + 9y, VByr = B(a,2R)cC D (3.4)
Brr
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hold for all k > N,,, where N,,, B,, and y, are constants depending on n, ¢, f,
and K. We follow the idea used in [16]. In the following, we use c, c1, ... to de-
note the constants depending only on n, «, 8, and K. Let Bog = B(a,2R) CC
Dand 0 <s <t < 2R. Letn € C§°(D) be a cutoff function such that

0<n=<1l, nly =L nlp, =0 Vil=<colt—s"

Letw = nv+ (1 — n)b; and ¢ = b, — w, where v is a constant to be chosen later.
ThenweV =V, p, p€ W(}‘p(B,; R"), and

Vw =1 —n)Vb, — (bpy —v)®Vn, Vo =nVb+ (by —v)®Vn. (3.5)
Using the inequality dg-(X +Y) < 2°(d.(X) +1|Y|?), by (1.1) and (1.4) we have

[ 1vner < [ 1vplr <1y fB d”. (V) + Tl B,|
s t t

1
<o [ dbevny +
P (t — )P
Since Vw = Vb, in D \ B, and Vw = 0 in B;, the first term in (3.6) can be

estimated by (3.2) as

f b — vI” +cilBil.  (3.6)
Bt\Bs

dl.(Vby) 5] dl.(Vw) +d2O)|Bs| + k7' [ [Vw —Vbe|.  (3.7)

B; BI\BS B:
We now use (3.5) and the inequality dx(X) < |X| + dx:(0) to deduce
/ dfé(Vw)
Bt\Bs

C
_<_6'2/ Vbl + —22 f lbe — 1P + 1B, \ Bsl. (3.8)
B/\Bs (t —s)P Jp\B,

Combining (3.6)—(3.8), we have

/Ikal"503/ Vbil? + —3 /lbk—vlp
B, B/\B; & — )P Jp,,

c
+ _ki |Vbi — Vw| + c3|Bagl. (3.9)
B,

Note also that, since t < ¢” 4+ 1forallt > 0and p > 1,

Vb — V| = |ka|+f Vol
Bt Bs BI\BS

< [ 1Yol + ¢4 f Vb l?
Bs B\ B
C4
+
@ —s)P

We now choose N, = 2¢3. Then, for k > N,,, by (3.9) and (3.10) we have

/|bk—v|P+c4|Bm|. (3.10)
Bag

c
/|ka|p fCS/ | Vb | + > / |br — v|? + c5|Bag|. (3.11)
Bs B:\Bs (t —5)P Jpyp
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Filling the hole—that is, adding cs f BSlkalp to both sides of (3.11)—we obtain

C6
(t—s)?

Cs

|Vbi|? < 7

Vb | +
B Cs B,

flm—vW+%me
Bogr

This inequality holds for all 0 < s < ¢ < 2R. Thus, a standard iteration argument
[6] yields

WhWﬁmR”/IM—vV+ﬁWMI (3.12)
Bpr Bag
and hence
Cg
Vb |P < by — v|? . 3.13
bt = 2 [ vl (3.13)
Now choose

V= Vp =f bk
Bar

and use the Sobolev—Poincaré inequality

(n+p)/n
/ by — vr|?P < Gn(/ Ika|p"/("+P))
Bap Bag

in (3.13), and we obtain (3.4).
To continue the proof, we let f; = 1 4 |Vb;|P"®+P) and r = (n + p)/n. Then,
by (1.4), { f¢} is bounded in L" (D) and, for all k > N,,, by (3.4) we have

f}: =< K"(f fk) VByr CC D,
Bg Byr

where i, is a constant depending on n, «, 8, and K. Therefore, by [8, Prop. 6.1]
and [6, Thm. 6.1], { fi} is bounded in L3 (D) for s = r 4+ (r — 1)/10"*"4"k! and

loc
hence {b;} is bounded in Wiz (D) with

p2

10"+14% 5, (n + p) (101, )P/

Lete, = min{e(p) | @ < p < B}. Then it is easily seen that ¢, > 0, and (3.3)
follows. [l

e=¢(p)=

4. Proof of Theorem 1.1
Letup € Wllo’c“ (Do; R") be the map given before, satisfying (1.3). Let {u;} be any
sequence in W1%(Q; R") that satisfies
u; — ug weakly in W*(Q; R") and lim I,(u;; Q) = 0. (4.1)
j—>o00
In the following, let {D;} (i = 1, 2, ...) be an arbitrary sequence of subdomains
of Dy that satisfies
QCcCcDig1CcCcD;cc Dy, i=12,....

We proceed in several steps.
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Step 1. Let {wi} be the sequence determined in Lemma 2.1 from {u;} with
p=a, u =ug, and D = D;. Using D; and uy € WH%(D; R"), we define space
(V, p) = (Vu,,p,» Pp,) as in Section 3. Then wi € V and, since I, (wy; D) <
k=2/2, itis clear thatinfy, I, (v; D;) = 0; hence we can apply Lemma 3.1 to the se-
quence {wy}. Let {b; } be the corresponding sequence in V satisfying pp, (wx, b;) <
1/k. In the following steps, we study properties of this new sequence {b;}.

Step 2. By Theorem 3.2, {b;} (k > N,,) is bounded in Wllo'c“+8" (Dq; R™), where
N, and g, are the absolute constants determined in Theorem 3.2. Therefore,
{bx} converges weakly in W!-¢+é(Q; R™). Since pp, (Wk, by) < 1/k and w; —
uo in WH¥(Dy; R™), we deduce that by — ug in Wll(,’f+5”(D1§ R"). This read-
ily implies ug € W%+ (D,; R"). In what follows, let &g = &,/2. We claim
limy_s o0 Ioteo (br; 2) = 0. To see this, we use the elementary estimate

dET(X) < 8(IX|4M20 + 1) + CsdE(X) V8 >0

with X = Vb, and integrate it over 2 to obtain
Taseo(bi; @) < 8 f (VB[ + 1) + C3 L, (by; Q). @2)
Q
Note that, from Theorem 3.2,

sup f [Vbi|*+2%0 < M < oo, lim I, (bx; D1) = 0.
k>N, JQ k—o00

Let k — ooin (4.2). We then have lim sup,_, o To4¢,(bx; 2) < M forall § > 0,
which implies that

lim Iy .0(Dy; §2) = 0.

k—o00

Also, by Lemmas 2.1 and 3.1, we have lim_, o [,|Vuj, — Vbi| = 0.

Step 3. In Step 2, we proved that ug € WH*0(D,; R") and obtained a new
sequence {b(l)} = {b;} in Wheteo(Q; R™). This sequence satisfies
k q

lim f |Vuj, — Vb’ =0
k—o0 Q

for a subsequence {u;, } of the original sequence {u;} and also satisfies

b\ — uy weakly in Whe+0(Q; R") and Jim LoteoB; @) = 0. 4.3)
—00

Hence {b,(cl)} satisfies the same type of conditions (4.1) as satisfied by {u;} except
that now it is in a better space, wlhetéo(Q: R"). Therefore, if & + g9 < B. we
can apply Step 1 again with {b,(cl)} replacing {u;}, D> replacing D, and o + &9
replacing «. Now let integer N and number £ > O be determined by

o+ (N —1Deyg < B <a+ Neg, o+ Neg=p8+c¢.

We repeat this step N times to eventually prove ug € W#+4(Dy . 1; R") and obtain
a sequence {b{V)} in W1-A+¢(Q; R") that satisfies both
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b™M — uy weaklyin WHATE(Q; R") and lim Ig,;(0; Q) =0 (4.4)
V—=>00

and also lim,_, o fQIVuJ(.”) — VbM| = 0, where {uj(-”)} is a subsequence of the
original sequence {u;}.

Step 4. Finally, let {vy} be the sequence in W-#*¢(Dy1; R") determined from
{bf,N )} in the same way that {w;} was from {u ;}in Lemma 2.1. We extend {v,} to
Do \ Dy4+1 by ug. Then, this sequence satisfies all the requirements of Theorem
1.1 and thus proves the theorem. O

S. Strong Convergence of Weakly Almost Conformal Mappings

We now consider the so-called conformal set
K=C,={AR| X1 >0, ReSO(®n)}, (5.1)

where SO(n) is the set of all orthogonal matrices of determinant 1. Since IC = C,,
is a closed cone, condition (1.1) is satisfied.

Recall that a map ¢ on the extended space R" U {oo} is a Mdbius transforma-
tion if it is a composition of finitely many similarities and inversions with respect
to the sphere [12; 13]. A sequence {u;} in WLP(Q; R) is said to be (weakly if
p < n) almost conformal if

lim dgn(Vuj (x))dx = 0. (5.2)
J=>XJo

As an application of Theorem 1.1, we prove in this section the following strong
convergence result concerning the weakly almost conformal sequences. See also
[11; 14; 16].

THEOREM 5.1.  There exists a number p < n such that any sequence {u;} con-
verging weakly in WP(Q; R") and satisfying (5.2) must converge strongly to a
Mobius transformation in both wWL1(Q; R") and Wllo’cp (€2; R").

REMARKS. (1) It follows from Yan [14] that any number p that validates Theo-
rem 5.1 must be at least the half-dimension, that is, p > n/2. Note also that the
strong convergence in W 7(Q; R") for p > n follows easily from a theorem of
Evans and Gariepy [4, Thm. 1]. See also the proof of Proposition 5.5.

(2) If the dimension n = 21 is even, Miiller, Sverik, and Yan [11] proved that
the smallest such p is precisely the half-dimension / = n/2. A key ingredient,
as observed by Iwaniec and Martin [9], is that in this case the conformality of
a map can be characterized by a nonlinear Cauchy—Riemann equation involving
the determinants of / x I sub-Jacobians, which enables us to use standard elliptic
estimates and the compensated compactness method; see {11] for details.

(3) Because the equations (the so-called Beltrami systems) governing the con-
formal mappings in the case of odd dimensions are essentially nonlinear, the meth-
ods used in [11] do not apply and in this case the problem regarding the smallest
p validating Theorem 5.1 remains unsolved; see also {7; 9; 16].
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In order to prove Theorem 5.1, we will need the following lemmas.

LEMMA 5.2. There exist pg < n and I' > 0 such that, for every ball B C R”,
fdé’,,(Vfﬁ) > Ff|V¢|P Vp €[po,nl, ¢€Cq(B;R").
B B

Proof. This has been proved in Yan [14, Thm. 1.3] using the estimates of very
weak solutions of p-harmonic equations established in Iwaniec [7]; see also [10]
and [16, Cor. 3.3]. We only remark here that py > n/2, from (14, Thm. 1.4]. []

LEMMA 5.3. Thereis a p; < n such that, for any sequence {u;} as given in The-
orem 5.1 with p €[ p1, nl, the weak limit u must be a restriction of an orientation-
preserving Mobius transformation onto €2.

Proof. By [16, Cor. C], we know p; < n can be chosen such that any weak limit
u as given in the lemma must be a weakly conformal map; that is, u satisfies

Vu(x) e C, a.e. x € Q2.

We can choose p; < n even closer to n so that the generalized Liouville’s theorem
in Iwaniec [7, Thm. 3] will assert that # must be a restriction of an orientation-
preserving Mobius transformation onto €2. The proof is thus complete. O

LEMMA 5.4. If p > n/2 and 9%2 is sufficiently smooth, then any Mobius trans-
Jormation that belongs to WLP(Q; R") must be a C®-diffeomorphism of a neigh-
borhood D of €2 into R".

Proof. Let $ and u be defined by
§(x) = Ax + b, w(x) =a+r?x —a|(x — a). (5.3)

A similarity is a transformation § with A = AP for some A € R and orthogonal
matrix P. By arepresentation result in [13, p. 75], a M6bius transformation g is ei-
ther a similarity or a transformation representable as ¢ = § o i, with §, u defined
by (5.3) and A orthogonal.

Let ¢ be a Mobius transformation and let ¢ € WP(Q; R"). If ¢ is a similarity
then it extends to the whole R”. Suppose now that ¢ is given by ¢ = § o u, where
d and p are defined by (5.3) and A is orthogonal. Then

Vo(x) =r?|x —a| 24 I—2x_a ® r ¢ .
|x —al — |x —a

Thus
Vo (x)| = +/nr’|x —al .
Suppose 952 is sufficiently smooth; then ¢ € WhP(Q; R*) only for 1 < p < n/2

if a € Q. Thus, if p > n/2 and ¢ € WHP(Q; ' R"), we have a ¢ Q and hence p €
C>(D; R") for some domain D containing Q. The lemma is proved. ]

In the following, we let p, = max{po, p1}. Thenn/2 < p, < n. Let p €[ p4,nl,
let {u;} be asequencein W LP(Q; R") as given in the theorem, and let iz be the weak
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limit. It follows from Lemmas 5.2-5.4 that u extends to a C*°-diffeomorphism
in a neighborhood D of Q as an orientation-preserving Mobius transformation.
Thus Vii(x) € C, for all x € D. Consequently, all conditions of Theorem 1.1 are
satisfied with o = p,, B = n, Do = D, and ug = it. Therefore, by Theorem 1.1,
we obtain a sequence {v;} in W57 ¢(D; R") that satisfies vy = @ in D \  and
/. ol Vur — Vu;, | = 0 as k — oo for some subsequence {uj, }; moreover,

vy — it in WL"t4(D; R") and klim / dire(Vy) = 0. (5.4)
— 00 D

PROPOSITION 5.5.  We have vy, — it strongly in W (Q; R").

Proof. Since det Vu is a null Lagrangian [1], by (5.4) we have

lim det Vy, = / det V. (5.5
k—o00 Q Q
Consider the function
G(X) = |X|" —n"?det X. (5.6)

Note that, by Hadamard’s inequality, G(X) > 0and G(X) =Oifandonly if X €
C,. By homogeneity, G(X) < t|X|" + Crdgn(X) for all T > 0. Thus, by (5.4),
we have
lim G(Vy,)) =0= / G(Vi); (5.7)
k—oo Jp D
combined with (5.5), this yields fQIVvk|" — fQIVﬁ |" and hence Vv, — Vu
strongly in L"(€2; M™*"). The proof is complete. O

Note that the strong convergence as asserted in the proposition also follows from
(5.4) and (5.7) by the result [4, Thm. 1], since G(X) is uniformly strictly W!"-
quasiconvex in the sense defined by [4].

Proof of Theorem 5.1. By Proposition 5.5, the subsequence {u;, } determined as
above converges strongly to # in W1(Q; R"), so Vu;, (x) — Vi(x) for a.e. x €
2. Therefore, by Corollary 2.2 and Lemma 5.2, uj, — u strongly in W;lo’cp (£2; R").
Since we can start with arbitrary subsequences of {u;}, we see that the original se-
quence {u;} converges strongly to # in both wi1(Q; R") and Wﬁ;cp (£2; R"). The
proof of Theorem 5.1 is now complete. O
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