POLYNOMIAL EQUATIONS OF IMMersed SURFACES

S. AKBULUT AND H. KING

If V is a nonsingular real algebraic set we say $H_i(V; \mathbb{Z}_2)$ is algebraic if it is generated by nonsingular algebraic subsets of V.

Let V^3 be a 3-dimensional nonsingular real algebraic set. Then, we prove that any immersed surface in V^3 can be isotoped to an algebraic subset if and only if $H_i(V; \mathbb{Z}_2)$ $i = 1, 2$ are algebraic. This isotopy above carries the natural stratification of the immersed surface to the algebraic stratification of the algebraic set. Along the way we prove that if V is any nonsingular algebraic set then any simple closed curve in V is ϵ-isotopic to a nonsingular algebraic curve if and only if $H_1(V; \mathbb{Z}_2)$ is algebraic.

Let V^3 be a 3-dimensional nonsingular real algebraic set. We call a homology group of V algebraic if it is generated by nonsingular algebraic subsets. In this paper we prove:

THEOREM. The following are equivalent:

(a) If $f: M^2 \hookrightarrow V^3$ is any immersion of a closed smooth surface in general position, then $f(M^2)$ is isotopic to an algebraic subset Z of V^3 by an arbitrarily small isotopy. This isotopy carries the natural stratification of $f(M^2)$ to the algebraic stratification of Z.

(b) $H_1(V; \mathbb{Z}_2)$ and $H_2(V; \mathbb{Z}_2)$ are algebraic.

To be more precise for $i = 1, 2$ let $AH_i(V^3; \mathbb{Z}_2)$ be the subgroup of $H_i(V^3; \mathbb{Z}_2)$ generated by nonsingular algebraic subsets. Then $H_i(V; \mathbb{Z}_2)$ is algebraic if it is equal to $AH_i(V; \mathbb{Z}_2)$. In particular zero homology groups are algebraic. We will refer to elements of $AH_i(V^3; \mathbb{Z}_2)$ as algebraic homology classes. This definition is consistent with the conventions of [AK].

In case f is an imbedding this theorem reduces to a special case of Proposition 1 below, which is Theorem 4.1 and Remark 4.2 of [AK]. Recall, if W^n is a nonsingular algebraic set of dimension n, then $AH_{n-1}(W; \mathbb{Z}_2)$ is the subgroup of $H_{n-1}(W; \mathbb{Z}_2)$ generated by nonsingular algebraic subsets. Also if $M \subset W$ is a closed submanifold, denote the
\mathbb{Z}_2-homology class in W induced by the fundamental class of M by $[M]_2$. Then

Proposition 1. A codimension one closed smooth submanifold M of W is ε-isotopic to a nonsingular real algebraic subset if and only if $[M]_2 \in AH_{n-1}(W; \mathbb{Z}_2)$. Furthermore, this isotopy can fix any smooth submanifold L of M which is already a nonsingular algebraic set.

Remark. Proposition 1 remains true if L is a union of nonsingular algebraic sets in M ([T]).

We first prove a codimension two version of this proposition for V^3, which is an interesting result in itself.

Proposition 2. A simple closed curve $C \subset V^3$ is ε-isotopic to a nonsingular algebraic curve if and only if $[C]_2 \in AH_1(V; \mathbb{Z}_2)$. Furthermore this isotopy can fix any collection of points in C.

Remark. This proposition remains true if V^3 is replaced by a nonsingular algebraic set of any dimension. The proof is essentially the same.

Lemma 3. Let $C \subset V^3$ be a nonsingular algebraic curve and $L \subset V^3$ be a smooth manifold. Then C can be moved by an ε-isotopy to a nonsingular algebraic curve C' which is transversal to L.

Proof. Let F^2 be the boundary of a small closed tubular neighborhood of C in V. F is a circle bundle over C and hence has a section, so after a small isotopy of F we can assume that $C \subset F$. Since F is null homologous, by Proposition 1, it is ε-isotopic to a nonsingular algebraic surface Z with $C \subset Z$. By the terminology of [AKJ] C is a stable algebraic set. Stable algebraic sets have the required property (Proposition 4.3 of [AKJ]).

Lemma 4. If V^3 is orientable and $F^2 \subset V^3$ is a compact orientable surface with $\partial F^2 = C \cup A$ where A is a nonsingular algebraic curve, then C is ε-isotopic to a nonsingular algebraic curve.

Proof. Since V is orientable F has a trivial normal bundle in V. Let $F' = \partial(F \times I) \subset V^3$ corners smoothed, and $C \cup A = \partial(F \times 0) \subset F'$. $C \cup A$ separates F'. Since $[F']_2 = 0$ by Proposition 1 F' is ε-isotopic to a nonsingular algebraic surface Z with $A \subset Z$. After a small isotopy of C
we can assume $C \subset Z$. Then $C \cup A$ separates Z; this means $[C]_2 = [A]_2 \in \text{AH}_1(Z; \mathbb{Z}_2)$. Hence by Proposition 1 C is ϵ-isotopic to a nonsingular algebraic curve C^* in Z. C^* is the required algebraic curve.

Remark. We can assume that the isotopy $C \rightarrow C^*$ fixes any finite number of points of C. This is because by Proposition 1 we can arrange that Z and C^* fix these points.

Lemma 5. If $S \subset V^3$ is an orientable surface and

$$i_*: H_1(V - S; \mathbb{Z}_2) \rightarrow H_1(V; \mathbb{Z}_2)$$

is the map induced by the inclusion, then $\text{ker}(i_*) \subset \text{AH}_1(V - S; \mathbb{Z}_2)$.

Proof. From the homology exact sequence

$$H_2(V, V - S; \mathbb{Z}_2) \xrightarrow{\partial} H_1(V - S; \mathbb{Z}_2) \xrightarrow{i_*} H_1(V; \mathbb{Z}_2) \xrightarrow{\text{im}(\partial)} \text{ker}(i_*)$$

Also we have isomorphisms

$$H_2(V, V - S; \mathbb{Z}_2) \xrightarrow{\text{excision}} H_2(N, \partial N; \mathbb{Z}_2) \xrightarrow{\text{Thom}} H_1(S; \mathbb{Z}_2)$$

where N is a small closed tubular neighborhood of S in V. In particular N is an I-bundle over S, and ∂N is an I^*-bundle over S ($I = S^0$). From the above isomorphism we see that elements of $\text{im}(\partial)$ are represented by the induced I^*-bundles $\tilde{\gamma}$ over the curves γ of S.

Let E be a small closed tubular neighborhood of γ in S, since S orientable $E \approx \gamma \times I$. Let E' be the induced I-bundle over E. Let $F^2 = \partial E'$. Clearly F^2 is a null homologous surface in V containing $\tilde{\gamma}$. Furthermore $\tilde{\gamma}$ separates F^2. By Proposition 1 F^2 can be ϵ-isotoped to a
nonsingular algebraic surface Z. After a small isotopy of $\tilde{\gamma}$ we can assume that $\tilde{\gamma} \subset Z$. Since $\tilde{\gamma}$ separates Z, by Proposition 1 $\tilde{\gamma}$ is ε-isotopic to a nonsingular algebraic curve γ^* in Z. By construction $\gamma^* \subset V - S$ and $[\gamma]_2 = [\gamma^*]_2 \in AH_1(V - S; \mathbb{Z}_2)$. \hfill \square

Lemma 6. Every element of $AH_1(V; \mathbb{Z}_2)$ can be represented by a connected nonsingular algebraic curve.

Proof. Let $\alpha \in AH_1(V; \mathbb{Z}_2)$ then α is represented by a union of nonsingular algebraic curves $C = C_1 \cup \cdots \cup C_k$. By Lemma 3 we can assume that they are disjoint. Let S be the boundary of a closed tubular neighborhood of C. Since the normal bundle of C has nowhere zero section, after an ε-isotopy of S we can assume that $C \subset S$. Then by tubing the components of S we get a connected surface S' with $C \subset S'$. Let C'_i be ε-isotopic copies of C_i on S' which are in general position with C_i. Connect C'_i, $i = 1, \ldots, k$, by tubes in S' to get a connected curve $C' = C'_1 \# \cdots \# C'_k$ such that C' is homologous to C in S'.

By construction $[S']_2 = 0$ in $H_2(V; \mathbb{Z}_2)$, so by Proposition 1 we can ε-isotop S' to a nonsingular algebraic surface Z with $C \subset Z$. Continue to denote the isotopic copy of C' in Z by C'. Again since $[C']_2 = [C]_2 \in AH_1(Z; \mathbb{Z}_2)$ by Proposition 1, C' is ε-isotopic to a nonsingular algebraic curve C^* in Z. C^* is connected and $\alpha = [C]_2 = [C^*]_2 \in AH_1(V; \mathbb{Z}_2)$. \hfill \square

Proof of Proposition 2. We will prove this in three steps,

Case 1. V^3 is orientable.

Let $c = [C] \in H_1(V; \mathbb{Z})$. Since $[C]_2$ is algebraic there is a nonsingular algebraic curve $A \subset V$ such that $[C] = [A] + 2b$ for some $b \in H_1(V; \mathbb{Z})$. This means if $B \subset V$ is a simple closed curve with $b = [B]$, then $A \cup 2B \cup C$ bounds an orientable surface. Here $2B$ denotes the link $B \cup B'$ where B' is a parallel copy of B, so $2B$ is a boundary of an orientable surface $B \times I$ in V. By Lemma 4 we can assume that $2B$ is a nonsingular algebraic curve. Again by Lemma 4 C is ε-isotopic to a nonsingular
algebraic curve. By the Remark following Lemma 4 we can assume that this isotopy fixes any finite number of points of C.

Case 2. $[C]_2 = 0$ in $H_1(V; \mathbb{Z}_2)$

Let $S \subset V$ be a surface representing the dual of the first Steifel-Whitney class $w_1(V)$ of V. We can assume that $C \cap S = \emptyset$. This is because by homological reasons $C \cap S$ must be an even number of points, and we can modify S as in the picture below without affecting its homology class.

![Diagram](image)

Hence $C \subset V - S$, and by assumption $[C]_2 \in \ker(i_*)$ where

$$i_* : H_2(V - S; \mathbb{Z}_2) \to H_2(V; \mathbb{Z}_2)$$

is the induced map by inclusion. Since $[S]_2 = w_1(V)$, S is orientable (exercise), so by Lemma 5 $[C]_2 \in AH_1(V - S; \mathbb{Z}_2)$. Since $V - S$ is orientable, by Case 1 C is ε-isotopic to a nonsingular algebraic curve in $V - S$, fixing any finite number of points of C.

Case 3. The general case.

We choose a connected nonsingular algebraic curve D disjoint from C so that $[C]_2 = [D]_2$. Let S be the boundary of a closed tubular neighborhood of $C \cup D$. As in the proof of Lemma 6 after a small isotopy of S we can assume that $C \cup D \subset S$, and let S' be the connected surface obtained by tubing the two components of S. By construction $C \cup D \subset S'$. Let C' and D' be ε-isotopic transverse copies of C and D in S'. Then by tubing C' and D' in S' we get a curve $E = C' \# D'$ as in the picture.
By construction we have
(a) \([S']^2 = 0\) in \(H_2(V; \mathbb{Z}_2)\)
(b) \([E]^2 = [C \cup D]_2\) in \(H_1(S'; \mathbb{Z}_2)\)
(c) \([E]^2 = 0\) in \(H_1(V; \mathbb{Z}_2)\)

By Case 2 \(E\) is \(\varepsilon\)-isotopic to a nonsingular algebraic curve \(E^*\) in \(V\) fixing the points \(E \cap (C \cup D)\). After an \(\varepsilon\)-isotopy of \(S'\) we may assume \(C \cup D \cup E^* \subset S'\). By Proposition 1 (and by the remark following it) we can \(\varepsilon\)-isotop \(S'\) to a nonsingular algebraic surface \(Z\) with \(D \cup E^* \subset Z\). Let \(C'\) be the corresponding \(\varepsilon\)-isotopic copy of \(C\) in \(Z\). Since \([C']_2 = [D \cup E^*]_2 \in \text{AH}_1(Z; \mathbb{Z}_2)\) by Proposition 1. \(C'\) is \(\varepsilon\)-isotopic to a nonsingular algebraic curve \(C^*\) in \(Z\). Furthermore given any finite number of points on \(C_1\) by Proposition 1 we can require that all these isotopies fix these points.

Proof of the Theorem. First we show \((b) \Rightarrow (a)\). For every \(y \in \text{f}(M^2)\) consider \(n(y) = \max\{n \mid \text{there are } n \text{ distinct points } x_1, \ldots, x_n \in M \text{ with } f(x_i) = y \text{ for } i = 1, 2, \ldots, n\}\) = the cardinality of \(f^{-1}(y)\). \(f(M)\) is a stratified set with strata \(\{L_i\}_{i=1}^{3}\) where \(L_i\) are the \(i\)-fold point sets, \(L_i = \{y \in \text{f}(M) \mid n(y) = i\}\). Call \(d(f) = \max\{i \mid L_i \neq \emptyset\}\), then \(d(f) \leq 3\) and if \(d(f) = 3, L_3\) is a collection of points (the triple points). Let \(M_3 = f^{-1}(L_3)\). By ([AK1], Lemma 2.3) there is a unique immersion \(f'\) with \(d(f') = 2\) making the following commute

\[
\begin{array}{ccc}
M' &=& B(M, M_3) \\ \downarrow p' & \\ M & \mapleft{f} & V
\end{array}
\begin{array}{ccc}
& \Rightarrow & \\
& \downarrow \pi' & \\
B(V, L_3) &=& V'
\end{array}
\]

where the vertical maps are the blowing up maps along the centers \(M_3, L_3\). Since the points are algebraic, we can assume that \(V' \maprightarrow V\) is the algebraic blow up of \(V\) along \(L_3\).

Since \(d(f') = 2\) the 2-fold point set \(L_2 \subset V'\) of the map \(f'\) is a smooth manifold (i.e., collection of smooth circles). Let \(M_2 = (f')^{-1}L_2\). Once again by [AK1] there is a unique immersion \(f''\) with \(d(f'') = 1\) (i.e., it is an imbedding) making the following commute

\[
\begin{array}{ccc}
M'' &=& B(M', M_2) \\ \downarrow p'' & \\ M' & \mapleft{f'} & V'
\end{array}
\begin{array}{ccc}
& \Rightarrow & \\
& \downarrow \pi'' & \\
B(V', L_2) &=& V''
\end{array}
\]
where the vertical maps are the blowing up maps. In particular $M'' = M'$
and $p'' = \text{identity}$, since $M_2 \subset M'$ is codimension one.

$V' = V \# \mathbb{R}P^3$ so $H_i(V') = H_i(V) \oplus H_i(\# \mathbb{R}P^3)$ for $i = 1, 2$; in
particular $H_i(V'; \mathbb{Z}_2)$ and $H_2(V'; \mathbb{Z}_2)$ are algebraic. By Proposition 2 the
curve L_2 is ε-isotopic to a nonsingular algebraic set. We can change $f(M)$
by a small isotopy in V keeping L_3 fixed so that the corresponding
double point set L_2 in V' is this nonsingular algebraic set. Therefore we
can take π'' to be the algebraic blow up along L_2, in particular V'' is a
nonsingular algebraic set.

We claim that $H_2(V''; \mathbb{Z}_2)$ is algebraic. This can be seen by the
homology exact sequences

$$
\cdots \to H_2(C'') \xrightarrow{i_*} H_2(V'') \to H_2(V'', C'') \to \cdots
$$

$$
\cdots \to H_2(C') \xrightarrow{\pi_*} H_2(V') \to H_2(V', C') \to \cdots
$$

where all the homology groups have coefficient \mathbb{Z}_2, and C', C'' are closed
tubular neighborhoods of L_2, $(\pi'')^{-1}(L_2)$ respectively. Since π'' is degree
1 π'' is onto, and by the above diagram $\ker \pi'' = \text{im}(i_*)$ where i is the
inclusion $C'' \hookrightarrow V''$. So $H_2(V''; \mathbb{Z}_2)$ is generated by the nonsingular
algebraic sets $(\pi'')^{-1}(L_2)$, and $(\pi'')^{-1}(S_i)$ where S_i are surfaces in V'. By
Proposition 1 we can assume S_i are nonsingular algebraic surfaces. By
([AK_1] Proposition 4.3) we can assume S_i are transverse to L_2. Hence
$H_2(V''; \mathbb{Z}_2)$ is generated by nonsingular algebraic sets.

By Proposition 1 we can ε-isotop the smooth submanifold $f''(M'')$
to a nonsingular algebraic subset Q of V'' by a smooth isotopy. By
([AK_1] Lemma 2.5) $\pi' \circ \pi''(Q)$ is an algebraic set. $\pi' \circ \pi''(Q)$ is isotopic
to $f(M)$ by a small isotopy. More precisely, the last remark can be seen
by applying ([AK_2] Proposition 5.5). Namely [AK_2] gives an isotopy h_i: $V'' \to V''$ such that

1. $h_0 = \text{Id}$,
2. $h_1(f''(M'')) = Q$,
3. $h_i^{-1}(\pi''(x)) = \pi^{-1}(x)$ for all $x \in L \subset V$, where $\pi = \pi' \circ \pi''$, $L = L_3 \cup \pi'(L_2)$.

Then we can define an isotopy

$$
g_i : V \to V \text{ by } g_i(x) = \pi h_i(y) \text{ for } \begin{cases} y = \pi^{-1}(x), & \text{if } x \notin L, \\
y \in \pi^{-1}(x), & \text{if } x \in L. \end{cases}
$$
(Notice π is a diffeomorphism over the complement of L.) g_t gives an isotopy of $f(M)$ to $\pi(Q)$ fixing L pointwise. Also g_t is smooth in the complement of L.

![Diagram](image)

It remains to show (a) \implies (b). Clearly (a) implies $H_2(V; \mathbb{Z}_2)$ algebraic. To see $H_1(V; \mathbb{Z}_2)$ algebraic we write every simple closed curve $C \subset V^3$ as the double point of an immersion. C has a normal bundle $C \times D^2 \subset V$. Then $C \times X \subset V$ where X is the figure eight, so $C \times X = f(S^1 \times S^1)$ where $f: S^1 \times S^1 \to V$ is the obvious immersion. Hence by (a) $f(S^1 \times S^1)$ can be made algebraic and C is the singular set of this algebraic set.

\square

Note added in proof. After writing this paper we have been informed by W. Kucharz that he had proved a special case of Proposition 2 when V is orientable in “Topology of Real Algebraic Threefolds” Duke Math. Journal, vol. 53, No. 4, Dec. 1986.

References

Received September 23, 1986 and in revised form March 3, 1987. Both authors were supported in part by NSF funds.

MICHIGAN STATE UNIVERSITY
EAST LANSING, MI 48824 - 1027

AND

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742