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Abstract

The goal of this thesis is to relate the projection diagram of a knot or link in S3 to

the geometry and topology of the link complement. We use the diagram of a link

K to obtain a Dehn surgery description of K from a hyperbolic link L. The simple

geometry of S3 \ L allows us to decompose it into ideal hyperbolic polyhedra, whose

dihedral angles provide a lot of combinatorial information. One consequence of this

approach is a mild condition on the original diagram that ensures K is hyperbolic and

all its non-trivial Dehn fillings are hyperbolike. Another, closely related, consequence

is a diagrammatic lower bound on the genus of K.

When K is an arborescent link, we use the correspondence between the link and

a weighted tree to simplify the projection diagram into a particularly nice form. This

simplified diagram then allows us to subdivide the link complement into hyperbolic

polyhedra and tetrahedra whose dihedral angles fit together in a consistent fashion.

An angled decomposition of this type implies that K is hyperbolic and provides a

robust combinatorial framework for more detailed investigations into its geometry.
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Chapter 1

Introduction

The goal of this thesis is to use a projection diagram of a knot or link to obtain

geometric and topological information about the link complement. We provide a mild

diagrammatic condition that implies the link complement has a complete hyperbolic

structure, and a slightly stronger one that shows any non-trivial Dehn filling of the

link has the topological properties of a hyperbolic manifold. For arborescent links, we

also describe a concrete way to subdivide the link complement into ideal hyperbolic

polyhedra whose dihedral angles fit together in a consistent fashion.

In the first four sections of this chapter, we give the relevant definitions about

knots and their diagrams, state the main results of the thesis, and relate them to

recent work in the field. The final section outlines the organization of the thesis.

1.1 Diagrams of hyperbolic links

Let K be a link in S3 = R3 ∪ {∞}, projected onto a Euclidean plane. (In our usage,

the term link refers to both knots and links of multiple components.) We can think

of the projection diagram D(K) as a 4-valent planar graph G(K), with over-under

crossing information at each vertex.

The theorems listed in the next two sections will work for all links whose diagrams

are sufficiently complicated, where we estimate the complexity of D(K) by counting

twist regions and crossings.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The above diagram has 3 twist regions, containing 2, 1
2
, and 11

2
twists,

respectively.

Definition 1.1. A bigon is a contractible region in the complement of G(K) that

has two edges in its boundary. Following Lackenby [14, 16], we define a twist region

of the link diagram to be a maximal string of bigons arranged end to end. A single

crossing adjacent to no bigons is also a twist region.

We are also concerned with the amount of twisting that occurs in each twist region.

We will count this either in terms of crossings or in terms of full twists, where a full

twist of one strand about the other corresponds to two crossings. See Figure 1.1 for

an illustration of these definitions.

Definition 1.2. A diagram D(K) of a link K ⊂ S3 is called prime if for any simple

closed curve γ in the projection plane that intersects the graph G(K) transversely in

two points in the interior of edges, γ bounds a subdiagram containing no crossings

of the original diagram. Note this ensures the diagram contains no monogons. See

Figure 1.2.

Following Lackenby [16], we also require the diagram to be twist-reduced.

Definition 1.3. A link diagram D(K) is twist-reduced if whenever a simple closed

curve γ in the projection plane intersects the graph G(K) transversely in four points

in the interior of edges, with two points adjacent to one crossing and the other two

points adjacent to another crossing, then γ bounds a subdiagram consisting of a

(possibly empty) collection of bigons arranged in a row between these two crossings.

See Figure 1.2.
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A B =⇒

A or B is

A B =⇒
.
.
.

A or B is

Figure 1.2: Left: A prime diagram; Right: A twist-reduced diagram.

Note that any diagram of a prime link K can be simplified into a prime, twist-

reduced diagram: for if D(K) is a diagram that fails to be prime, then all crossings on

one side of a simple closed curve γ are extraneous and can be removed. Similarly, if

D(K) is not twist-reduced, then one can amalgamate the two twist regions adjacent

to a curve γ into a single region, reducing the number of twist regions.

Following the work of Thurston [33], it is known that the complements of “most”

knots and links admit a complete hyperbolic structure, that is, a complete Riemannian

metric of constant sectional curvature −1. Specifically, Thurston proved that the only

non-hyperbolic knots are torus knots, which follow along the surface of an unknotted

torus, and satellite knots, which are contained in a tubular neighborhood of a simpler

knot. A similar statement holds for links. Furthermore, the more complicated a link

diagram is, the more likely it is that K is hyperbolic.

In practice, however, it is typically quite difficult to decide from a diagram D(K)

whether K is hyperbolic. One known special case is that of alternating links, which

have projection diagrams where over- and under-crossings alternate. Menasco has

used Thurston’s work to prove that an alternating link K is hyperbolic if and only if

a prime alternating diagram D(K) has two or more twist regions [17].

The first main theorem of this thesis extends Menasco’s result to all sufficiently

complicated links.

Theorem 1.4. Let K ⊂ S3 be a link with a prime, twist-reduced diagram D(K). If

D(K) has at least two twist regions and every twist region of D(K) contains at least

6 crossings, then K is hyperbolic.
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Because there are torus and satellite links with arbitrarily many twist regions,

some assumption on the number of crossings in each twist region is necessary. The

hypothesis of 6 crossings per twist region is probably too strong, but 6 is a small

enough number to make the theorem applicable in practice.

The methods used to prove Theorem 1.4 also provide a diagrammatic estimate on

the genus of a hyperbolic link.

Definition 1.5. Let K ⊂ S3 be a link. A Seifert surface for K is an orientable,

incompressible surface whose boundary is K. We say that the genus of K is the

smallest genus of any Seifert surface for K.

Theorem 1.6. Let K ⊂ S3 be a link of k components with a prime, twist-reduced

diagram D(K). If D(K) has t ≥ 2 twist regions and at least 6 crossings in each twist

region, then

genus(K) ≥

⌈
1 +

t

6
−

k

2

⌉
,

where ⌈·⌉ is the ceiling function that rounds up to the nearest integer.

Crowell [6] and Murasugi [21] have independently proved that the genus of an

alternating link is equal to half the degree of its Alexander polynomial, and Gabai

gave an algorithm to compute the genus of an arborescent link [10]. (See Section 1.4

for the definition of arborescent links.) The advantage of Theorem 1.6 is that it works

for general links and, in fact, gives the exact value for certain families of links.

Theorems 1.4 and 1.6 are both proved using Dehn surgery techniques that have

other interesting consequences.

1.2 Dehn surgery

Let M be a 3-manifold with torus boundary ∂M , for example a link complement. We

can pick a slope s on ∂M – that is, an isotopy class of simple closed curves on ∂M .

The manifold obtained by gluing a solid torus S1 × D2 to ∂M in such a way that

the slope s bounds a disk in the resulting manifold is called a Dehn filling along the

slope s, or a Dehn surgery along s. More generally, if M is a 3-manifold with multiple
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torus boundary components and along each component we have a slope si, we obtain

a closed manifold by Dehn filling along these slopes.

Definition 1.7. For a link K ⊂ S3, let the exterior E(K) denote the complement

of an open tubular neighborhood of K. On each boundary torus of T ⊂ ∂E(K), we

define a meridian µ to be the slope bounding a disk in S3, and the longitude λ to be

the slope of a curve that runs along a component of K and has trivial linking number

with K. Then the pair 〈µ, λ〉 gives a basis for the fundamental group of T .

Using the basis 〈µ, λ〉 for the fundamental group of a torus T , slopes on T are

parameterized by Q = Q ∪ {∞}. Specifically, a slope corresponds to a/b if and only

if the slope is equivalent to aµ + bλ. For a knot exterior E(K), Dehn filling along

a meridian of K, i.e. 1/0 filling, will always give S3. This Dehn filling is called the

trivial filling. All other Dehn fillings are non-trivial.

Dehn surgery on hyperbolic manifolds has been extensively studied in the last

quarter-century. Thurston has shown that given a hyperbolic manifold M with torus

boundary, all but finitely many choices of surgery slope on each component of ∂M

yield a closed hyperbolic manifold [32]. More recently, Hodgson and Kerckhoff showed

that if the surgery slope on each component of ∂M is longer than a given universal

constant, then the resulting Dehn filled manifold is hyperbolic [13]. For hyperbolic

manifolds whose boundary is a single torus, they prove that at most 60 slopes give

non-hyperbolic manifolds, and a similar statement holds for multiple boundary com-

ponents.

Using these results, Purcell was able to show that for all sufficiently complicated

knots, every nontrivial Dehn filling is hyperbolic [28]. However, the required knots

are quite complicated, needing over 140 crossings per twist region.

It turns out that we can rule out exceptional surgeries on much simpler links if

we only require that the Dehn filled manifold satisfies the topological properties of

hyperbolic manifolds.

Definition 1.8. A closed, orientable 3-manifold M is hyperbolike if
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(1) M is irreducible and atoroidal,

(2) M is not Seifert fibered, and

(3) π1(M) is infinite and word-hyperbolic.

All hyperbolic manifolds are hyperbolike. Thurston’s Geometrization Conjecture

[33], whose proof was recently claimed by Perelman [24, 25], implies the converse.

Theorem 1.9. Let K be a link in S3 with a prime, twist-reduced diagram D(K). Sup-

pose that every twist region of D(K) contains at least 6 crossings and each component

of K passes through at least 7 twist regions (counted with multiplicity). Then

(1) any non-trivial Dehn filling of some but not all components of K is hyperbolic,

and

(2) any non-trivial Dehn filling of all the components of K is hyperbolike.

Jessica Purcell has independently proved Theorem 1.9 using geometric techniques,

and the two proofs will appear in a joint paper [9].

Corollary 1.10. Let K be a knot in S3 with a prime, twist-reduced diagram D(K). If

D(K) has at least 4 twist regions, and each twist region contains at least 6 crossings,

then any non-trivial Dehn filling of K is hyperbolike.

The corollary follows from Theorem 1.9 because if K is a knot, every twist region

contains two strands of K. Thus in a diagram with 4 twist regions, K passes through

a twist region 8 times.

In fact, an easy class of examples shows that the hypothesis of 4 twist regions in

Corollary 1.10 is a sharp bound. Consider the family of pretzel knots with 3 twist

regions, in which the twist regions all run in parallel. (See Figure 1.3.) When the

numbers of crossings p, q, r in the three twist regions are all odd, the Seifert surface

S is a punctured torus. (This can be seen by cutting S into two ideal triangles, glued

together as in the figure.) Dehn filling along the boundary of S glues a disk into

the puncture of the punctured torus, producing a torus that is incompressible by a

theorem of Przytycki [27]. Thus the Dehn filled manifold is toroidal, so Corollary

1.10 assumes the smallest possible number of twist regions.
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p q r

S

S

Figure 1.3: A pretzel knot with 3 twist regions. When p, q, r are odd, Dehn surgery
along the boundary of the surface S produces an incompressible torus.

As for the requirement that each twist region contain at least 6 crossings, we know

that some such requirement is necessary. It is known that there exist knots with non-

trivial exceptional surgeries that have arbitrarily large volume, hence an arbitrarily

high number of twist regions. These have been discovered by Eudave-Muñoz and

Luecke [8], Eudave-Muñoz [7], as well as recently by Baker [2]. Thus a high number

of twist regions alone is not enough to rule out exceptional surgeries. However, it

seems difficult to tell if the requirement of six crossings per twist region is sharp.

Another advantage of Theorem 1.9 is that it gives information on Dehn fillings

without requiring us to restrict our attention to a particular class of knots or links.

This should be compared to other known results. If we restrict to alternating links,

Lackenby has shown that all non-trivial Dehn surgeries on alternating knots with at

least 9 twist regions are hyperbolike [14], as are surgeries on alternating links in which

each component passes through 17 or more twist region. Wu proved that all non-

trivial surgeries on a large class of arborescent knots are hyperbolic [35]. Theorem 1.9

applies to both of these classes of knots as well as non-alternating, non-arborescent

knots and links.

Theorem 1.9 also gives a nice tool for understanding Dehn fillings on link com-

plements as well as knot complements. Classifying Dehn fillings on links is often a

more difficult problem than classifying fillings on knots, because of the way in which
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the fillings of individual link components interact. For example, Wu proved that non-

trivial surgeries on most arborescent links produce manifolds that are Haken and not

small Seifert fibered [36], just as he did for knots [35], but he leaves open the question

of whether these surgeries on links are atoroidal. On the other hand, our arguments

apply equally well to both knots and links.

1.3 Angled polyhedra

The main tool used in the proofs of Theorems 1.4, 1.6, and 1.9 is the study of angled

polyhedral decompositions. A 3-manifold with boundary (M, ∂M) can always be

subdivided into ideal polyhedra, whose vertices have been truncated and replaced by

polygonal faces that lie on ∂M . In our context, we require that the polyhedra have

dihedral angles corresponding to the angles of convex ideal polyhedra in the hyperbolic

space H3. (By a theorem of Rivin [30], this amounts to checking a combinatorial

condition on the dihedral angles.) We also require that the angles of neighboring

polyhedra fit together in a consistent fashion, i.e., that the dihedral angles around

each edge of M add up to 2π. If this is the case, we call the decomposition of M an

angled polyhedral decomposition.

An angled decomposition of a manifold M does not necessarily give it a hyperbolic

metric, because in gluing the polyhedra together we may have created singularities

that amount to shearing along the edges. However, an angled polyhedral decomposi-

tion can be thought of as a piecewise hyperbolic structure on the manifold.

Angled polyhedral decompositions have many advantages. For starters, they are

comparatively easy to obtain and deform. Because a hyperbolic structure on a finite-

volume 3-manifold is unique by the Mostow-Prasad rigidity theorem [20, 26], any

topological triangulation or polyhedral decomposition of a manifold corresponds to at

most one geometric triangulation giving a hyperbolic metric. Finding the hyperbolic

structure by gluing ideal polyhedra is also quite difficult, because it requires solving

a system of non-linear, complex-valued equations.
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On the other hand, an angle structure on a given ideal triangulation or polyhedral

decomposition is the solution to a much more manageable system of linear equations

and inequalities. Thus, if such a structure is found, it can be deformed to optimize

some desired geometric property.

Angle structures also provide great control over the surfaces that can lie in a

manifold. The work of Casson, expanded by Lackenby [14], defines a combinatorial

area of surfaces intersecting angled polyhedra, and this notion of area has the same

Gauss-Bonnet relationship with Euler characteristic as hyperbolic area. As a result,

combinatorial area can be used to show that any 3-manifold with an angled polyhedral

decomposition can, in fact, be given a hyperbolic structure (Theorem 2.8). Using

combinatorial area, Lackenby has also found a way to define the combinatorial length

ℓ(s) of a slope s on ∂M . (See Chapter 2 for the precise definition.)

Theorem 1.11 (Lackenby). Let M be a manifold with an angled polyhedral decompo-

sition. Let s1, . . . , sn be a collection of slopes on ∂M , with one si on each component

of ∂M . If ℓ(si) > 2π for each i, then

(1) Dehn filling M along the slopes s1, . . . , sn produces a hyperbolike manifold, and

(2) Dehn filling M along a proper subset of the si produces a hyperbolic manifold.

Theorems 1.4, 1.6, and 1.9 are all proved using the same surgery description of

the link K. In Chapter 3, we start with a prime, twist-reduced diagram D(K) and

use it to add a number of link components to K. The result is an augmented link J

with the property that both K and its Dehn fillings can be obtained by surgery on

J . The link exterior E(J) subdivides into two particularly nice angled polyhedra. By

studying the combinatorics of these polyhedra, we can estimate the length of surgery

curves on ∂E(J); applying Theorem 1.11 to these estimates gives Theorems 1.4 and

1.9. The combinatorial length of boundary slopes also bounds the Euler characteristic

of surfaces in E(K), yielding the genus estimate of Theorem 1.6.

For a large family of knots and links, called arborescent links, we can construct

an angled decomposition for the original link, without any augmentation, obtaining

more detailed information about the geometry of the link complement.
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1.4 Arborescent links

Arborescent links were first defined by Conway [5] (who called them algebraic links)

and studied in great detail by Montesinos [19], Gabai [10], and Wu [35, 36], among

others. They are typically defined in terms of tangles.

Definition 1.12. A tangle is a pair (B, t), where B is a 3-ball and t is a compact

1-manifold, properly embedded in B, whose boundary consists of four points on ∂B.

A marked tangle is a triple (B, t, D), where B and t are as above and D ⊂ ∂B is a

disk that contains exactly two endpoints of t. See Figure 1.4 for examples.

Definition 1.13. A rational tangle is a marked tangle (B, t, D), in which t consists

of arcs γ1 and γ2 that are simultaneously parallel to ∂B.

A rational tangle can be visualized in a very concrete way by taking B to be a solid

pillowcase (the 3-dimensional neighborhood of a unit square) and D to be the right

or left half of ∂B. The arcs γ1 and γ2 start at the corners of the square and travel

just inside ∂B with a fixed slope s ∈ Q∪ {∞}. Conway has proved that any rational

tangle can be constructed in this way, and conversely, the slope s determines a rational

tangle R(s), uniquely up to isotopy fixing the four corners [5]. Furthermore, it follows

from his work that every rational tangle (B, t, D), positioned in the solid pillowcase

as above, admits an isotopy fixing ∂B that makes the diagram of t alternating. In

effect, the isotopy implements the Euclidean algorithm to find a continued fraction

expansion of the slope s whose integers all have the same sign as s. See Figure 1.5.

B1

D1

B2

D2

B1 + B2

+ =

Figure 1.4: Two marked tangles, B1 and B2, can be glued along their marking disks
D1 and D2 to form a sum tangle B1 + B2. In this figure, B1 and B2 are rational but
their sum is not.
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3

5
=

1

1 +
2

3

=
1

1 +
1

1 +
1

2

Figure 1.5: A rational tangle of slope 3/5, progressively simplified into an alternating
projection.

Definition 1.14. Let B1 and B2 be two marked tangles. We can join them by gluing

the marking disk D1 to D2. This forms the sum tangle B1 +B2, as in Figure 1.4. The

sum is called non-trivial if neither B1 nor B2 is a rational tangle of slope 0 or ∞.

An arborescent tangle A is defined by the property that rational tangles are

arborescent tangles, and any non-trivial sum of arborescent tangles is another

arborescent tangle.

When we begin constructing an arborescent tangle by gluing two rational tangles

B1 and B2, we can always position them as in Figure 1.4, with the marking disks in

plain view. Later on, we may want to glue the tangle A = B1 +B2 to another marked

tangle A′, along a marking disk D ⊂ ∂A that appears quite complicated. However,

we can always place D in a simple position while preserving the diagram of B1 and

B2, by isotoping ∂A outward along a braid. See Figure 1.6.

Definition 1.15. An arborescent link K ⊂ S3 is obtained by gluing two arborescent

tangles A and A′ by some map identifying their entire boundaries. Again, the gluing

map can be visualized concretely by connecting A to A′ along a braid.

In short, arborescent links are obtained by combining rational tangles along braids.

Examples of arborescent links include two-bridge links, constructed from gluing only

two rational tangles, and pretzel links like the one in Figure 1.3. (The knot in Figure

1.3 is constructed from rational tangles R(1
p
), R(1

q
), and R(1

r
).) Another special case
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B1

B1
B2

B2

DD

⇒

Figure 1.6: To place marking disk D in a simple position, we isotope the boundary
of tangle B1 + B2 along a braid.

is the family of Montesinos links, which contains both two-bridge and pretzel links.

Montesinos links are obtained by gluing several rational tangles cyclically along a

band, as in Figure 1.7.

At any stage in the construction of an arborescent link, we also have some number

of tangles A1, . . . , An connected along a band. However, apart from Montesinos links,

the tangles Ai could each consist of many rational tangles.

In Figure 1.7, the two crossings in the band can be inserted into any of the four

rational tangles, changing its slope by 2. (Note, following Figure 1.5, that adding

an integer to the slope twists the right or left pair of strands, which is equivalent

to placing twists into a horizontal band.) Thus, when several rational tangles are

connected along a band, their individual slopes are only fixed modulo Z. To help

avoid this ambiguity, we will choose slopes s with |s| < 1.

Definition 1.16. Let R(s) be a rational tangle of slope s, with |s| < 1. We define

the length ℓ(R) to be the number of crossings in the reduced alternating diagram of

R. Equivalently, ℓ(R) is the sum of the absolute values of the integers in the shortest

continued fraction expansion of s.

Observe that, for s ∈ (0, 1), the continued fraction expansions of s and s− 1 have

the same length. Thus ℓ(R(s)) = ℓ(R(s−1)), and we have an unambiguous notion of

length for the rational tangles used to build an arborescent link.
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R(s1) R(s2) R(s3) R(s4)

Figure 1.7: A Montesinos link is obtained by gluing several rational tangles cyclically
along a band.

Definition 1.17. Suppose that, in an arborescent link K, arborescent tangles A1, . . . , Ak

are joined together cyclically along a band. For each i, we define ℓi to be the length

ℓ(Ai) if Ai is a rational tangle, or ∞ otherwise. If

1

li−1
+

1

li
+

1

li+1
< 1

for every triple of consecutive tangles around every band in K, we say the link K is

balanced.

In fact, we will work with a definition of balanced that is more inclusive than the

one above; see Definition 4.17.

Theorem 1.18. Let K be a balanced arborescent link. Then there exists a decompo-

sition of S3 \ K into angled hyperbolic polyhedra.

Because angled polyhedral decompositions necessarily imply that a manifold

admits a hyperbolic structure, we have

Corollary 1.19. Every balanced arborescent link K is hyperbolic.

The statement of Theorem 1.18 is sharp, in the following sense. For any triple of

positive integers n1, n2, n3 whose reciprocals sum to at least 1, there a Montesinos link

K composed of three rational tangles R1, R2, R3, such that ℓ(Ri) = ni and K is not

hyperbolic. For example, the pretzel knot K(−1
2

, 1
3
, 1

5
) is actually a torus knot, and
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the pretzel link K(−1
2

, 1
3
, 1

6
) contains an incompressible torus in its complement. (By

Menasco’s theorem [17], non-hyperbolic examples of this sort cannot be alternating.)

Corollary 1.19 mostly replicates known results about hyperbolic arborescent links.

Oertel has compiled a complete list of non-hyperbolic Montesinos links [23], and Wu’s

work on Dehn surgery indirectly proves that all non-Montesinos arborescent knots

are hyperbolic [35]. In the remaining case of non-Montesinos links with multiple

components, Corollary 1.19 may have some new content.

In any case, the primary interest of Theorem 1.18 involves the angled polyhedra

themselves, because angled decompositions provide a way to glean concrete informa-

tion about the hyperbolic structure of a manifold.

1.5 Organization of thesis

This thesis is organized as follows. Chapter 2 surveys the detailed definitions of

angled polyhedra and the theory of normal surfaces that is used to prove results

about combinatorial length and Dehn surgery. Chapter 3 then applies this theory to

an augmented link constructed from a diagram D(K), using combinatorial length to

prove Theorems 1.4, 1.6, and 1.9.

The remaining chapters are devoted to arborescent links. Chapter 4 describes

the correspondence between the diagram of an arborescent link and a weighted tree

T , using the tree to simplify the diagram into a particularly nice form. Chapter

5 uses the simplified diagram and its correspondence to the tree to subdivide the

link complement into ideal polyhedra. Chapter 6 studies the dihedral angles of these

polyhedra, setting up the gluing equations sufficient for an angle structure and proving

that for a balanced arborescent link K, the equations always have solutions.



Chapter 2

A Survey of Angled Triangulations

The goals of this chapter are to set up the definitions needed to study angled trian-

gulations and to survey the theorems that make this point of view powerful. These

theorems fall into two categories: combinatorial results using normal surfaces and

analytic results using the technique of volume maximization.

This chapter is primarily a survey. None of the results listed here are original;

they have either appeared in published work or are minor extensions of known results.

The main ideas were developed by Marc Lackenby [14, 15] and Igor Rivin [29, 30].

2.1 Angled polyhedra

Definition 2.1. For the purposes of this thesis, a polyhedron is a 3-ball P̂ with a

specified graph Γ embedded in ∂P̂ , such that

(1) each vertex of Γ has valence at least 3,

(2) each edge of Γ has ends on distinct vertices, and

(3) each region of ∂P̂ \ Γ is bounded by at least 3 edges.

P̂ inherits vertices and edges from Γ, and the faces of P̂ are regions of ∂P̂ \ Γ.

Definition 2.2. An ideal polyhedron Po is a polyhedron P̂ with the vertices removed.

A truncated ideal polyhedron P is a polyhedron P̂ with a closed regular neighborhood

15
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of the vertices removed. Unless noted otherwise, the polyhedra mentioned in the

sequel will be truncated ideal polyhedra.

A truncated ideal polyhedron P has two kinds of faces: interior faces that are

truncated copies of the original faces of P̂ , and boundary faces that come from the

truncated vertices of P̂ . P also has two kinds of edges: interior edges that come from

the original truncated edges of P̂ , and boundary edges along the boundary faces. Note

that we can recover Po from P by removing the boundary faces.

The main objects of study in this thesis are three-dimensional manifolds with

boundary (specifically, link complements) subdivided into truncated ideal polyhedra.

These polyhedra are joined along their interior faces to form the manifold M , while the

boundary faces fit together to tile ∂M . Our actual goal is to investigate the geometry

of the open manifold M \ ∂M , whose corresponding subdivision does not include the

boundary faces. However, it turns out that the asymptotic geometry of the truncated

polyhedra – the angles of boundary faces, which correspond to dihedral angles on

interior edges – carries a lot of information about the geometry of the interior.

Definition 2.3. Let P be a truncated ideal polyhedron, and let Po be the ideal

polyhedron obtained by removing the boundary faces of P . To each edge of Po (and

thus each interior edge of P ), we assign an internal angle αi and an external angle

ǫi = π − αi. We say that P or Po is an angled polyhedron if

(1) αi ∈ (0, π) (meaning the polyhedron is convex),

(2) around every ideal vertex of Po,
∑

ǫi = 2π (meaning each boundary face of P

is a convex Euclidean polygon), and

(3) for any closed curve γ ⊂ ∂Po that intersects each edge transversely at most

once, does not lie wholly in a face, and does not merely encircle an ideal vertex,
∑

γ ǫi > 2π.

Theorem 2.4 (Rivin [30]). Every angled polyhedron Po can be realized as a convex

ideal polyhedron in H3 with the prescribed dihedral angles, uniquely up to isometry.

Conversely, every convex ideal polyhedron in H3 is an angled polyhedron.
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α

α

β

β

γ

γ

α + β + γ = π

α1

α1

α2

α2

α3

α3

αn

αn

π − α1 − α2

π − α2 − α3

Figure 2.1: Left: in an ideal tetrahedron, opposite dihedral angles are equal. Right:
dihedral angles in an ideal prism.

Although the conditions of Definition 2.3 seem complicated to check, in many

cases they can be greatly simplified.

Example 2.5. The simplest type of an ideal polyhedron is a tetrahedron. Condition

(2) says that the internal angles of the three edges that meet at each ideal vertex

must add up to π. Since this holds at each ideal vertex, it follows that opposite edges

must have equal dihedral angles. (See Figure 2.1(a).) It is easy to check that with

such a choice of angles, the strict inequality of condition (3) is satisfied automatically.

Example 2.6. Let T be a polygon with n ≥ 3 sides. An ideal prism is obtained by

removing the vertices of T×[0, 1]. We will call the polygons T×1 and T×0 the top

and bottom faces, respectively. The prism will have n top edges, n bottom edges,

and n lateral edges connecting the top face to the bottom face. (See Figure 2.1(b).)

Choose internal angles α1, . . . , αn for the top edges, and give the corresponding

bottom edges the same labels. So long as αi +αi+1 < π, we can choose internal angles

θi,i+1 = π−αi −αi+1 for the lateral edges. This assignment of angles already satisfies

conditions (1) and (2) of Definition 2.3. We will prove in Lemma 5.12 that condition

(3) is satisfied whenever
∑n

i=1 αi > π and αi + αj < π for all i 6= j.

When we glue angled polyhedra together to form a manifold, we want to make

sure that dihedral angles come together in a geometrically consistent way.



18 CHAPTER 2. A SURVEY OF ANGLED TRIANGULATIONS

Definition 2.7. Let (M, ∂M) be a compact 3-manifold with boundary. An angled

polyhedral decomposition is a subdivision of M into (truncated) angled polyhedra,

glued along their interior faces, such that
∑

αi = 2π around each interior edge. By

removing the boundary faces, we also get a subdivision of M \ ∂M into angled ideal

polyhedra. If all the polyhedra are actually tetrahedra, the decomposition is called

an angled triangulation.

Theorem 2.4 says that an angled decomposition constructs a manifold M out of

hyperbolic pieces. In fact, Definition 2.7 is already restrictive enough to imply that

M is hyperbolic, by a theorem of Lackenby. (Compare [14, Corollary 4.6] and the

remark following [15, Lemma 4].)

Theorem 2.8 (Lackenby). Let M be an orientable 3-manifold with an angled poly-

hedral decomposition. Then ∂M is composed of tori, and the interior of M admits a

complete, finite-volume hyperbolic structure.

Its proof requires the techniques of normal surfaces.

2.2 Normal surfaces

The work of William Thurston in the late 1970s revealed deep connections between

the geometry of 3-manifolds and the topology of surfaces in the manifold [33]. In

particular, he proved the following important case of the Geometrization Conjecture:

Theorem 2.9 (Thurston’s hyperbolization theorem). Let M be a compact, orientable

3-manifold with boundary consisting of tori. The interior of M admits a complete,

finite-volume hyperbolic structure if and only if M contains no essential spheres, disks,

tori, or annuli.

When the manifold we are studying carries some additional structure, such as

an angled polyhedral decomposition, it becomes natural to ask how surfaces in the

manifold interact with that structure. The theory of normal surfaces, originally

developed by Haken [12] and generalized and expanded in many directions, says

that an embedded essential surface (F, ∂F ) ⊂ (M, ∂M) can be isotoped until its

intersections with the polyhedra have a particularly nice, normal form.
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(a) (b)

Figure 2.2: (a) Normal disks in a truncated polyhedron. (b) An admissible disk.

Definition 2.10. Let P be a truncated ideal polyhedron. A simple closed curve

γ ⊂ ∂P is called normal if

(1) γ is transverse to the edges of P ,

(2) no arc of γ in a face of P has endpoints on the same edge, or on an interior

edge and an adjacent boundary edge,

(3) γ doesn’t lie entirely in a face of P ,

(4) γ intersects each edge at most once, and

(5) γ intersects each boundary face at most once.

A disk in P bounded by a normal curve γ is called a normal disk. See Figure

2.2(a) for several examples.

Notation. To avoid confusion with longer arcs on ∂M , we will refer to the intersection

between a curve γ and a face of P as a segment. (Thus an arc can consist of many

segments.) Segments of γ lying in interior faces of P will be called interior segments,

and the segments lying in boundary faces will be called boundary segments.

With a eye to Dehn surgery applications, Lackenby has extended the theory of

normal surfaces to a more general class of surfaces that cannot be normalized [14].

These surfaces may not be embedded, and may even have boundary components in

the interior of M .

Definition 2.11. Let P be a truncated ideal polyhedron. An immersed disk D ⊂ P

is called admissible if
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(1) ∂D \ ∂P is a (possibly empty) collection of disjointly embedded arcs with end-

points inside interior faces of P ,

(2) ∂D ∩ ∂P is an immersed closed curve or an immersed collection of arcs,

(3) each segment of ∂D in a face of P is embedded,

(4) if ∂D ∩ ∂P is a closed curve, it satisfies conditions (1) − (3) of Definition 2.10

of a normal curve, and

(5) each arc component of ∂D ∩ ∂P satisfies conditions (1)− (2) of Definition 2.10.

An example is shown in Figure 2.2(b). We call an immersed surface F ⊂ M an

admissible surface if it intersects each polyhedron in a collection of admissible disks.

Angle structures on a polyhedral decomposition of M allow us to measure the

complexity of surfaces using combinatorial area.

Definition 2.12. Let D ⊂ P be an admissible disk in an angled polyhedron, with

the boundary faces of P lying on ∂M . Let E1, . . . , En be the interior edges crossed

by ∂D (counted with multiplicity), and let ǫ1, . . . , ǫn be the corresponding external

angles. Then define the combinatorial area of D to be

a(D) =
n∑

i=1

ǫi + π|∂D ∩ ∂M | − 2π + 3π|∂D \ ∂P | .

For an admissible surface F ⊂ M , a(F ) is defined by summing the areas of its

admissible disks.

For disks with ∂D ⊂ ∂P , this definition matches the formula for hyperbolic area.

As a comparison, a polygon T ⊂ H2 with external angles ǫi has area a(T ) =
∑

ǫi−2π.

(See, for example, Corollary 2.4.15 of [34].) Ideal vertices have internal angle 0 and

thus add π to the area, just as each component of ∂D ∩ ∂M adds π to combinatorial

area. As for the coefficient 3π per component of ∂D\∂P , it was chosen by Lackenby to

make the combinatorial area of D automatically positive whenever ∂D passes through

the interior of P .
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(a) (b)

Figure 2.3: (a) Vertex links. (b) A boundary bigon.

In fact, there are only two types of admissible disks whose area is 0; both of them

happen to be normal. The first is a vertex link cutting off a boundary face; its area

is 0 by Condition (2) of Definition 2.3. The second is a boundary bigon cutting off an

interior edge; it has area 0 because its boundary curve only picks up area from two

boundary faces. They are shown in Figure 2.3.

Lemma 2.13. Let D ⊂ P be an admissible disk in an angled polyhedron. If D is not

a vertex link or a boundary bigon, a(D) > 0.

Proof. If D is normal, Lackenby [15, Lemma 4] proves that a(D) > 0 unless D is a

vertex link or a bigon. If D is not normal, Lackenby [14, Lemma 4.2] proves that

a(D) > 0. In both cases, the proofs rely on condition (2) of Definition 2.3 of an

angled polyhedron and the observation that if ∂D self-intersects or crosses an edge

multiple times, the area can actually be reduced by surgering the disk.

Remark 2.14. In his study of admissible surfaces, Lackenby [14] worked with angled

spines that are dual to the polyhedra. Our Definition 2.1 of a polyhedron is actually

slightly more restrictive than his dual definition of a thickened spine, in that our poly-

hedra are not allowed to have bigon faces. This results in some simpler statements.

Bigon faces of the (non-truncated) polyhedra would allow normal disks other than

boundary bigons or vertex links to have zero area [14, Lemma 4.2]; in our scenario,

every other admissible disk has strictly positive area.

The analogy between hyperbolic area and combinatorial area extends to the

following combinatorial version of the Gauss-Bonnet Theorem [14, Proposition 4.3].
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Proposition 2.15. Let F ⊂ M be an admissible surface in a manifold with an angled

polyhedral decomposition. Let Length(∂F \∂M) be the number of arcs of intersection

between ∂F \ ∂M and the polyhedra. Then

a(F ) = −2πχ(F ) + 2πLength(∂F \ ∂M) .

This development allows us to prove that only hyperbolic manifolds have angled

polyhedral decompositions.

Proof of Theorem 2.8. Each component of ∂M is tiled by boundary faces of the poly-

hedra. Just inside each boundary face, a polyhedron has a normal disk of area 0.

These vertex links glue up to form a closed, boundary-parallel normal surface F of

area 0. By Proposition 2.15, χ(F ) = 0, and since M is orientable, F must be a torus.

Thus ∂M consists of tori.

By Thurston’s hyperbolization theorem, the interior of M is hyperbolic if and only

if M contains no essential spheres, disks, tori, or annuli. In our situation, any such

essential surface can be isotoped into normal form. An essential sphere or disk has

positive Euler characteristic, hence negative area. Thus it cannot occur.

A normal torus T ⊂ M has area 0 and thus, by Lemma 2.13, must be composed of

normal disks of area 0. Since T has no boundary, these must all be vertex links, which

glue up to form a boundary-parallel torus. Similarly, a normal annulus A ⊂ M must

be composed entirely of bigons, since a bigon cannot be glued to a vertex link. But

a chain of bigons forms a tube around an edge of M , which is certainly not essential.

Thus we can conclude that M is hyperbolic.

2.3 Combinatorial length and Dehn surgery

Lackenby’s crucial insight [14] is that one can use the combinatorial area of surfaces in

a manifold M to define a combinatorial length of curves on ∂M , and that the length

of surgery curves gives information about Dehn fillings of M .

Definition 2.16. Let P be an angled polyhedron, and let D ⊂ P be an admissible

disk that intersects at least one boundary face. Let γ be a segment of ∂D in a
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boundary face of P . Then we define the length of γ relative to D to be

ℓ(γ, D) =
a(D)

|∂D ∩ ∂M |
.

Definition 2.17. For a manifold M with an angled polyhedral decomposition, let γ

be a (possibly non-closed) immersed arc in ∂M . We call γ a simplicial arc if

(1) γ is disjoint from the vertices of ∂M ,

(2) the endpoints of γ (if any) lie on edges of ∂M ,

(3) each segment of γ in a boundary face is embedded, and

(4) no segment of γ in a boundary face has endpoints on the same edge.

We can now define the combinatorial length of simplicial arcs on ∂M by consid-

ering all the possible inward extensions of the arc.

Definition 2.18. Let γ ⊂ ∂M be a simplicial arc. Let γ1, . . . , γn be the boundary

segments that make up γ, ordered along a parametrization of γ. For each i, let Di

be an admissible disk in the corresponding polyhedron, whose boundary contains γi.

Then H = ∪n
i=1Di is called an inward extension of γ if

(1) ∂Di agrees with ∂Di+1 on the shared face of their polyhedra, and

(2) if γ is closed, ∂Dn agrees with ∂D1 on the common face.

We define the combinatorial length of γ to be

ℓ(γ) = inf

{
n∑

i=1

ℓ(γi, Di)

}
,

where the infimum is taken over all inward extensions of γ.

Definition 2.19. Let s be a slope on a boundary component of M . Then define the

combinatorial length of s to be

ℓ(s) = inf {ℓ(γ)} ,
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the infimum being taken over all closed simplicial curves γ ⊂ ∂M that represent

non-zero multiples of slope s.

This string of definitions gives us the following lemma [14, Proposition 4.8].

Lemma 2.20. Let M be a manifold with an angled polyhedral decomposition, and let

F ⊂ M be an admissible surface. Let C1, . . . , Cm be the components of ∂F ∩ ∂M ,

each Cj representing a non-zero multiple of some slope si(j). Then

a(F ) ≥
m∑

j=1

ℓ(si(j)) .

Proof. The admissible disks of F bordering on each Cj form one inward extension

of Cj . Definition 2.16 has us divide the area of each disk by the number of its

intersections with ∂M , so we do not end up double-counting any area.

As a consequence of Lemma 2.20, surfaces with long boundary have large com-

binatorial area, hence large genus. This yields the following powerful Dehn surgery

result [14, Theorem 4.9]. (See Definition 1.8 for the meaning of hyperbolike.)

Theorem 2.21 (Lackenby). Let M be a manifold with an angled polyhedral decompo-

sition. Let s1, . . . , sn be a collection of slopes on ∂M , with one si on each component

of ∂M . If ℓ(si) > 2π for each i, then the manifold obtained by Dehn filling M along

the slopes s1, . . . , sn is hyperbolike.

The machinery that Lackenby has developed also allows for an extension of his

theorem to surgeries along only some components of ∂M .

Theorem 2.22. Let M be a manifold with an angled polyhedral decomposition. Let

s1, . . . , sm be a collection of slopes on some, but not all, of the boundary tori. If

ℓ(si) > 2π for each i, then the manifold obtained by Dehn filling M along the slopes

s1, . . . , sm is hyperbolic.

Proof. By Thurston’s Theorem 2.9, proving that the Dehn filled manifold is hyper-

bolic amounts to ruling out essential spheres, disks, tori, and annuli. Any such
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surface F must intersect at least one of the solid tori added during the surgery pro-

cess, because M is hyperbolic by Theorem 2.8. Thus F contains a punctured surface

G ⊂ M , whose punctures (not counting the original boundary components of F )

represent surgery slopes si(1), . . . , si(k) of length greater than 2π. We can place G in

normal form in the angled polyhedra and compute its combinatorial area. Then

a(G) = −2πχ(G), by Proposition 2.15

≤ 2π|∂G \ ∂F |, given the choices of F

<

|∂G\∂F |∑

j=1

ℓ(si(j)), by assumption

≤ a(G), by Lemma 2.20,

obtaining a contradiction.

2.4 Angle structures and volume maximization

We have seen in Section 2.2 that Thurston’s hyperbolization theorem, together with

the machinery of normal surfaces, implies that only hyperbolic manifolds can be

decomposed into angled polyhedra. In this section, we describe a way to use angled

triangulations to find the hyperbolic structure on a manifold in a much more concrete

fashion, without resorting to Thurston’s deep result.

Let M be an open manifold, the interior of a 3-manifold with torus boundary.

The goal is to obtain M as a union of ideal tetrahedra, glued together in a way that

extends the hyperbolic structure over all of M . Recall from Example 2.5 that the

shapes of ideal hyperbolic tetrahedra are parametrized by a choice of three dihedral

angles that add up to π. The faces of these tetrahedra – ideal triangles – are all

isometric. Thus, given a topological triangulation of M into angled tetrahedra, there

is a unique way to glue their geometric structures by isometries on the faces to give

a hyperbolic structure on the complement of the edges.

In order to extend this hyperbolic structure over all of M , three conditions need

to be satisfied:
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(a) (b)

Figure 2.4: (a) A shearing singularity around an edge. (b) The fundamental domain
at an incomplete cusp. The developing image of this torus would spiral in to a point.

(1) the dihedral angles at each edge must add up to 2π,

(2) there must not be any translational singularities (shearing) at the edges, and

(3) the resulting metric on M must be complete.

Condition (1) is familiar, and says that we have an angled triangulation. The

other two conditions can be understood in terms of the geometry of the boundary

triangles obtained when we truncate the tetrahedra. Condition (2) says that the side

lengths of the triangles line up as we go around each edge of M . Condition (3) says

that the boundary triangles at each cusp of M fit together to give a horospherical

torus, whose developing map covers a horosphere in H3. See Figure 2.4 for examples

of how these conditions can be violated.

Definition 2.23. Consider a topological ideal triangulation τ of a manifold M . An

angle structure on τ is a choice of dihedral angles for the tetrahedra that makes τ

into an angled triangulation. The set of all angle structures on τ is denoted A(τ).

A(τ) is the solution set of a system of linear equations (the three angles defining

a tetrahedron sum to π; the angles around an edge sum to 2π) and linear inequalities

(all angles are positive). Thus A(τ) is a convex polytope, whose closure A(τ) is

compact.

In the early 1990s, Rivin observed [29] that conditions (2) and (3) are closely

related to critical points of the volume function V : A(τ) → R. Every ideal hyperbolic
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tetrahedron T with dihedral angles α, β, γ has an easily computable volume

Vol(Tαβγ) = L(α) + L(β) + L(γ) ,

where

L(x) = −

∫ x

0

log |2 sin t| dt

is the Lobachevsky function. (See [18].) We can then associate a volume V (p) to

any angle structure p ∈ A(τ), by adding up the volumes of all the angled tetrahedra.

Rivin proved that at any critical point of V , shears around the edges of M vanish

[29], satisfying condition (2).

This can be combined with combinatorial properties of the triangulation due to

Neumann and Zagier [22] to prove the following theorem [4].

Theorem 2.24 (Rivin, Chan–Hodgson). Suppose that V has a critical point at p ∈

A(τ). Then the ideal tetrahedra whose shapes are described by p glue together to give

a complete hyperbolic structure on M .

It turns out that the volume function V is concave down; as a result, any critical

point will be a maximum, and will be unique. V will always attain a maximum on

the compact polytope A(τ), but this maximum could lie on the boundary. To find

the hyperbolic structure on M using angled triangulations, it suffices to prove that

the volume function is maximized in the interior.

In practice, the task of proving that the maximum of volume occurs in the interior

of A(τ) seems challenging but doable. For example, François Guéritaud has carried

out this program for all hyperbolic punctured torus bundles over the circle [11]. His

methods translate directly to angled triangulations of two-bridge knot complements,

and can be used to attack more complicated knots. The volume maximization pro-

cess does indeed find geometric triangulations for at least a few special families of

arborescent knots; the proof of this fact will be written up in future work.

Despite the promise of this approach, there are situations where the polytope of

angle structures coming from some ideal triangulation τ attains the maximum volume

on the boundary, and many more situations where the location of the maximum is
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difficult to ascertain. In this case, Theorem 2.8 still tells us that the underlying

manifold M is hyperbolic. In this case, it seems natural to ask how its hyperbolic

volume compares to the volume associated to an angle structure.

Conjecture 2.25. Let p ∈ A(τ) be an angled triangulation of a manifold M . If p

does not give the complete hyperbolic structure on M , then

V (p) < Vol(M) .



Chapter 3

Augmented Links and Dehn

Surgery

In this chapter, we will use the tools of angled polyhedra and normal surfaces to

prove Theorems 1.4 and 1.9. The proof strategy is slightly counterintuitive, in that

we get information about Dehn fillings of a link K by first adding a number of extra

components to the link. In a construction pioneered by Colin Adams [1] and expanded

by Jessica Purcell [28], we will add crossing circles around the twist regions of D(K)

and remove crossings to obtain an augmented link J . Both K and its Dehn fillings

can then be represented as Dehn fillings of J .

The payoff of this approach is that the link exterior E(K) has a natural de-

composition into angled polyhedra P1 and P2, whose combinatorics is fairly easy to

understand. We will estimate the combinatorial length of surgery slopes on the tori

of ∂E(J), giving a way to rule out exceptional surgeries on both J and the original

link K.

3.1 Constructing the augmented link

Let D(K) be a prime, twist-reduced diagram of a link K ⊂ S3. As described in

the introduction, each twist region in D(K) consists of two strands of K wrapping

around each other. For each twist region Ri, add a simple closed curve Ci encircling

29
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K I J L

Figure 3.1: Left to right: The original knot with twist regions marked; the link I
with crossing circles added; the homeomorphic link J ; the flat augmented link L.

the twist region, known as a crossing circle. Let I be the resulting link.

Note that the manifold E(I) is homeomorphic to the manifold E(J), where J is

the simpler link with all full twists removed at each twist region of I. We can recover

the original link K from J by performing 1/ni surgery on each Ci, |ni| being the

number of full twists we removed. Furthermore, any Dehn filling of K can be viewed

as a filling of J . We will spend the bulk of this chapter analyzing the geometry and

combinatorics of S3 \ J .

To assist us in this analysis, we will make J even simpler by removing all remain-

ing single crossings from the twist regions. The resulting link L has two kinds of

components: knot strands coming from K that lie flat in the projection plane, and

crossing circles Ci perpendicular to the projection plane. We call L a flat augmented

link. If some twist region Ri had an odd number of crossings, E(L) is no longer

homeomorphic to E(J); indeed, J and L can have a different number of components.

We will address this issue later, in Section 3.2. See Figure 3.1 for a visual summary

of this construction.

To subdivide E(L) into polyhedra, we follow the construction of Agol and Thurston

[16, Appendix]. First, we slice S3 along the projection plane, cutting it into two iden-

tical 3-balls. Since they are identical, we focus our attention on B1, the ball above the

projection plane. The decomposition of B2 proceeds in the same way. Each crossing

circle Ci bounds a disk Di, half of which lies in B1 and borders on three edges in the

projection plane. We then further slice B1 along each of these half-disks.

This allows us to pull apart the two sides of each half-disk and flatten them,
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A

A

C C

Figure 3.2: Decomposing S3 \L into ideal polyhedra: First slice along the projection
plane, then split remaining halves of two-punctured disks. Obtain polygon on right.

creating the planar diagram of a polyhedron. (See Figure 3.2.) This polyhedron will

inherit one face from each region of the projection diagram and one face from each

side of disk Di. When we remove a closed regular neighborhood of L, we obtain

a truncated ideal polyhedron P1 ⊂ E(L) (see Definition 2.2), whose boundary faces

correspond to strands of L. The other ball B2 becomes an identical polyhedron P2.

P1 and P2 will each have six interior edges per crossing region, three from each

side of the intersection between Di and the projection plane. At each interior edge, a

face coming from the projection place meets a face coming from Di. This allows us to

two-color the interior faces of P1 and P2 in a convenient fashion: the projection-plane

faces will be white and the crossing-disk faces shaded, as in Figure 3.2.

To reconstruct E(L) from P1 and P2, we first glue matching shaded faces in each

Pj, and then glue the two polyhedra to each other along the white faces. Observe

that in this gluing, the interior edges become 4-valent: each borders on two shaded

faces (the two halves of Di) and two white faces in the projection plane. In R3, we

can position the crossing disks Di perpendicular to the projection plane, creating

dihedral angles of π/2 between adjacent faces. Conveniently, this feature carries over

into hyperbolic geometry.

Theorem 3.1 (Purcell). Let D(K) be a prime, twist-reduced diagram of a link K,

with at least two twist regions. Let L be the flat augmented link obtained from D(K).

Then E(L) is hyperbolic. Furthermore, the polyhedra Po
1 and Po

2 decomposing the

interior of E(L) are convex ideal polyhedra in H3, with totally geodesic faces that

meet at right angles.
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Purcell proved this theorem by a direct construction [28, Theorem 6], using only

Andreev’s theorem about circle packings. We will give an alternate proof, shorter

but less direct, that clarifies the relationship between our link K and the alternating

links studied by Menasco [17].

Proof. Given the diagram D(K), we can always reverse the crossings in some of

the twist regions to obtain an alternating diagram D(K ′). Furthermore, because

the construction of the augmented link ignores the over-under crossing information,

applying this construction to K ′ will yield the same link L. Thus every flat augmented

link L is an example of what Adams calls an augmented alternating link. When L has

2 or more crossing circles, and thus K ′ has 2 or more twist regions, Menasco’s theorem

[17] implies E(K ′) is hyperbolic. Then Adams’ result on augmented alternating links

[1] implies that every flat augmented link L is hyperbolic.

Additionally, note that there is an orientation-reversing involution of S3 \ L pre-

serving L and our ideal polyhedra: namely, reflection through the projection plane.

Every lift of this involution to the universal cover H3 is a reflection in a totally geodesic

plane. Hence the polyhedra can be made totally geodesic in H3, with the shaded faces

meeting the white faces at right angles.

Remark 3.2. It is worth noting that the statement and proof of Theorem 3.1 do not

assume that the original link K is hyperbolic. When D(K) has at least two twist

regions, it follows from Menasco’s theorem that the alternating link K ′ is hyperbolic;

we use this to bootstrap to a hyperbolic structure on E(L). This will eventually be

used to prove that K is hyperbolic (Theorem 1.4).

Recall that the truncated ideal polyhedra P1 and P2 have rectangular boundary

faces on ∂E(L). If we keep track of how these rectangles are glued along boundary

edges in the gluing pattern of P1 and P2, we can construct a combinatorial picture of

each cusp torus of ∂E(L).

Lemma 3.3 (Purcell). The cusp tori of L are rectangular. For a crossing circle Ci,

the cusp torus is composed of two boundary faces. For a knot strand Kj lying flat in

the projection plane, the cusp torus is a 2×n block of boundary faces, where n is the

number of twist regions crossed by Kj (counted with multiplicity).
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Proof. Let Ci ⊂ L be a crossing circle. As we saw in the construction of Section 3.1,

P1 intersects the tubular neighborhood of Ci in a rectangular boundary face F1. The

shaded faces on opposite sides of F1 are glued to one another in the gluing pattern,

since they glue to give half the disk Di bounded by Ci. Thus an arc in F1 connecting

the two shaded faces represents a meridian of Ci.

The two white faces meeting F1 are glued to corresponding faces of P2, joining F1

to the boundary rectangle F2. Thus the cusp torus of Ci is tiled by F1 and F2, with

the meridian and longitude as shown in Figure 3.3.

A

C

A

C

λ

µ

Figure 3.3: Left: Each crossing circle gives rise to one boundary face F1 ⊂ P1. Right:
The cusp diagram corresponding to a crossing circle. Here µ is a meridian, and λ is
a longitude.

For a knot strand Kj ⊂ L, P1 will have one boundary face for each strand of

Kj between adjacent crossing disks Di. (See Figure 3.2.) These boundary rectangles

are glued end to end along shaded faces coming from the Di to complete a longitude

of Kj . P2 will give rise to an identical chain of rectangles, glued to the boundary

rectangles of P1 along the white faces of the projection diagram. Thus the cusp torus

of Kj is tiled by a 2×n block of rectangles, where n is the number of intersections

between Kj and the crossing disks Di, hence equal to the number of twist regions

that Kj passes through, counted with multiplicity. See Figure 3.4.

3.2 Half-twists and surgery slopes

Recall that to construct the flat augmented link L with its nice polyhedral decompo-

sition, we took three steps, summarized in Figure 3.1. We added crossing circles to
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A

C

a d

b c

C

A
a b c d a

a′ b′ c′ d′ a′

µ

λ

Figure 3.4: The cusp diagram for the knot strand cusp. Solid segments correspond
to white faces, and dotted segments correspond to shaded faces.

K (obtaining link I); removed a whole number of twists per twist region (obtaining

a homeomorphic link J); and then removed any remaining single crossings. Whereas

any Dehn filling of K is a filling of J , the same is no longer true for L. Thus to

obtain our results, we need to understand the combinatorics of the link J , with the

half-twists re-inserted.

Conveniently, E(J) can still be decomposed into the same polyhedra P1 and P2,

only with a slightly modified gluing pattern. P1 has one shaded face from each side of

a crossing disk Di; to construct E(L), we glued those faces to each other. If instead

we glue those shaded faces of P1 to matching shaded faces of P2, we effectively insert

a half-twist along disk Di and a single crossing into the projection diagram of L. We

can do this wherever J has a single crossing. In particular, this simple rearrangement

means that we have the following version of Theorem 3.1.

Theorem 3.4. Let D(K) be a prime, twist reduced diagram of a link K. Assume

that D(K) has at least two twist regions, with ai crossings in twist region Ri. Let J

be the augmented link constructed in Section 3.1, in which the number of crossings in

region Ri is reduced to ai mod 2. Then

(1) E(J) is hyperbolic,

(2) E(J) subdivides into angled polyhedra P1 and P2 with dihedral angles π/2,

(3) K is the result of Dehn filling each crossing circle Ci of J along the surgery

slope 1/si, where we removed 2|si| crossings from Ri, and

(4) every Dehn filling of K is a filling of J .
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Figure 3.5: Cusp view: adding a half-twist to a flat augmented link shifts the gluing
along the shaded faces.

Proof. The first two conclusions follow from Theorem 3.1 because E(J) decomposes

into the same polyhedra P1 and P2 as E(L), with the same dihedral angles. By

Theorem 2.4, P1 and P2 are angled polyhedra. The last two conclusions result from

the process of constructing J , and are mentioned in Section 3.1.

In the cusp diagrams of ∂E(J), each half-twist in the transition from L to J will

shift the gluing by one step along the shaded faces coming from Di, as illustrated

in Figure 3.5. Thus the neat rectangular pattern of Lemma 3.3 no longer holds.

However, we can still make convenient statements about the universal cover T̃ of

each cusp torus of S3 \ J .

Definition 3.5. Let T be a cusp torus of ∂E(J), with universal cover T̃ = R2. Then

T̃ contains a rectangular lattice coming from white and shaded faces of P1 and P2.

We construct a basis 〈s, w〉 of this Z2 lattice by letting s be a step parallel to a

shaded face and w be a step parallel to a white face.

Lemma 3.6. Let T be a cusp torus of ∂E(J) and let 〈s, w〉 be the basis for the lattice

on T̃ . In this basis, the fundamental domain of T appears as follows:

(1) If T comes from a crossing circle without a half-twist, it has meridian w and

longitude 2s.

(2) If T comes from a crossing circle with a half-twist, it has meridian w ± s

(depending on the direction of the twist) and longitude 2s.
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(3) If T comes from a component Kj of the original link K, it has meridian 2s and

longitude nw + ks, where Kj runs through n twist regions with multiplicity and

k is an undetermined integer.

Proof. If J does not contain any half-twists, this is a restatement of Lemma 3.3. (See

Figures 3.3 and 3.4.) Each half-twist along the crossing circle Ci shears the meridian

of Ci by s, as described above. It also shears by s the cusp of every component of

the original link K passing through the crossing disk Di.

Thus if Kj passes through a half-twist m times, the projection of the curve nw+ms

to T will be some longitude of Ki, in the sense of completing a basis of π1(T ) along

with µ = 2s. The true longitude, in the sense of having linking number 0 with Kj , is

then some curve of the form nw + ks for some integer k.

The basis 〈s, w〉 also allows us to make precise statements about the surgery

curves on ∂E(J) that correspond to non-trivial surgeries on K.

Theorem 3.7. Let K = ∪m
j=1Kj be a link in S3 with a prime, twist reduced diagram

D(K). Suppose that D(K) contains twist regions R1, . . . , Rn (n ≥ 2) and that twist

region Ri contains ai crossings. For each component Kj, let nj be the number of twist

regions crossed by Kj, counted with multiplicity; and let sj be a non-trivial surgery

slope on Kj.

With this notation, the surgery on S3\K along slopes s1, . . . , sm can be represented

as a surgery on J as follows:

(1) On the (mostly) planar component of J corresponding to Kj, the surgery curve

is pjnjw + qjs, for some integers pj 6= 0 and qj.

(2) On the crossing circle Ci, the surgery curve is w ± ais.

Proof. By Lemma 3.6, Kj has meridian 2s and a longitude of the form njw + kjs.

Since sj is a non-trivial surgery slope, it must cover at least one longitude. In partic-

ular, the number of steps that a curve representing sj takes along the white faces is

a nonzero multiple of nj.
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To prove conclusion (2), suppose first that ai is even, so J has no half-twist at Ci.

By Lemma 3.6, Ci has longitude 2s and meridian w. By Theorem 3.4, the surgery

curve on Ci traverses ai/2 longitudes and one meridian, proving the result.

Now, suppose that ai is odd. Then in the construction of J , we have removed

2bi = ai − 1 crossings; the remaining half-twist of J at Ci goes in the same direction

as the twists of K. By Lemma 3.6, Ci has longitude 2s and meridian w + σis, for

some σi = ±1. By Theorem 3.4, the surgery curve traverses σibi longitudes (with the

same σi) and one meridian. Thus, in the basis of 〈s, w〉, the surgery curve is

µ + σibiλ = (w + σis) + σibi(2s)

= w + σi(1 + 2bi)s

= w + σiais .

3.3 Normal surfaces in the augmented link

Now that we understand exactly how the Dehn fillings of K are represented as fillings

of J , we can estimate the lengths of surgery slopes by applying the normal surface

theory of Sections 2.2–2.3 to the truncated ideal polyhedra P1 and P2. In fact, The-

orem 3.4 tells us that P1 and P2 are examples of a special type of angled polyhedron,

which we will call rectangular-cusped.

Definition 3.8. Let P be an angled polyhedron (see Definition 2.3) in which we have

truncated the ideal vertices. We say that P is rectangular-cusped if

(1) each boundary face of P (each face of P ∩ ∂M) meets 4 interior edges, and

(2) each interior edge is labeled with angle π/2.

Rectangular-cusped polyhedra have two convenient features. First, their interior

faces can be two-colored, in a similar fashion to the white and shaded faces of P1 and

P2. Around each rectangular boundary face, opposite interior faces have the same

color. Second, making all dihedral angles equal to π/2 ensures that all combinatorial

areas are multiples of π/2.
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(a) (b)

Figure 3.6: Two ideal triangles in a rectangular-cusped polyhedron.

In addition to the vertex links and boundary bigons of area 0 (see Figure 2.3), we

need to define a third kind of special admissible disk.

Definition 3.9. Let P be a truncated ideal polyhedron. An admissible disk D ⊂ P

is called an ideal triangle if

(1) ∂D ⊂ ∂P ,

(2) ∂D intersects the boundary faces of P exactly three times, and

(3) ∂D is disjoint from the interior edges of P .

Two examples are shown in Figure 3.6. Note that an ideal triangle D has area

a(D) = π and length ℓ(γ, D) = π/3 for each segment γ of ∂D ∩ ∂M .

Proposition 3.10. Let D ⊂ P be an admissible disk in a rectangular-cusped poly-

hedron, such that ∂D passes through at least one boundary face. Let γ ⊂ ∂M be a

boundary segment of ∂D. If D is not a bigon or an ideal triangle,

ℓ(γ, D) ≥
π

2
.

Proof. We consider different cases, conditioned on n = |∂D ∩ ∂M |. By Definition

2.16, ℓ(γ, D) = a(D)/n.

Case 1: n = 1. For this case, we need to prove that a(D) ≥ π/2. An admissible

disk with one component of ∂D ∩ ∂M cannot be a vertex link or boundary bigon, so

by Lemma 2.13, a(D) > 0. Since all areas in a rectangular-cusped polyhedron are

multiples of π/2, a(D) ≥ π/2.



3.3. NORMAL SURFACES IN THE AUGMENTED LINK 39

γ1 γ2

γ′
2

γ′′
2

γ3

γ4

γ5
γ′

5

e1 e2

e3

e4

Figure 3.7: Schematic picture for Case 2 of Proposition 3.10.

Case 2: n = 2. For this case, we need to prove that a(D) ≥ π. If a(D) = 0, D is a

boundary bigon, excluded by the hypotheses. So we need to rule out the possibility

that a(D) = π/2.

If such a disk were to occur, it would have to have ∂D ⊂ ∂P , and ∂D would

have to intersect exactly one interior edge. Then ∂D passes through three interior

faces, which cannot all have the same color because two of them share an edge. Thus

a segment γ1 ⊂ ∂D in a boundary face must connect adjacent interior faces, for

otherwise all three interior faces would have the same color. See Figure 3.7 for a

schematic picture.

We can pull γ1 off the boundary face and have it intersect interior edge e1. This

creates a new disk D′ with one segment on ∂M and area 0, since this isotopy reduced

the area by π/2. If D′ were admissible, it would be a counterexample to Case 1. Thus

∂D′ must violate some condition of admissibility. The only way this can happen is if

one of the new segments of ∂D′, γ′
2 or γ′

5, has both endpoints on the same edge, or

on adjacent interior and boundary edges. But since D is admissible, e1 and e4 must

be distinct edges, so γ′
5 has endpoints on distinct edges.

Thus γ′
2 connects adjacent interior and boundary edges, and so e1 = e2. We can

then isotope γ′
2 across this interior edge, creating a new disk D′′ that has just one

intersection with ∂M and one intersection with an interior edge. Since γ4 and the

new segment γ′′
2 lie in adjacent faces of P , we have e3 = e4. Then γ4 connects adjacent

interior and boundary edges, contradicting the assumption that D was admissible.
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Therefore, such a disk D does not exist.

Case 3: n = 3. For this case, we need to prove that a(D) ≥ 3π/2. The three compo-

nents of ∂D ∩ ∂M already ensure that a(D) ≥ π. So if ∂D also intersects an interior

edge or the interior of P , we have a(D) ≥ 3π/2. Otherwise, D is an ideal triangle,

excluded by the hypotheses.

Case 4: n ≥ 4. For this case,

a(D) ≥ n · π − 2π ≥
n

2
· π ,

proving the lemma.

Thus ideal triangles are the only admissible disks of nonzero area that contribute

less than π/2 to combinatorial length. To obtain the best possible bounds on the

length of surgery curves, we need to find out more about how these triangles fit into

polyhedra P1 and P2 that decompose the link complement E(J).

Lemma 3.11. Let P be a truncated ideal polyhedron, and let D ⊂ P be an ideal

triangle. Then all the segments of ∂D lie in distinct faces of ∂P , and D is normal.

Proof. ∂D consists of six segments, alternating between boundary and interior faces.

Label them γ1, . . . , γ6. If two of these segments (say, γ1 and γ3) lie in the same face of

P , then a third segment (γ2) must have both endpoints on the same edge, violating

the definition of an admissible disk. Thus each γi lies in a different face, so ∂D is

embedded. Since ∂D intersects each boundary face at most once and is disjoint from

the interior edges altogether, D must be normal.

For the rest of this chapter, we will work directly with the polyhedra P1 and P2,

and the only manifolds we will consider are E(J) and its Dehn fillings.

Definition 3.12. In polyhedra P1 and P2, we will classify ideal triangles into three

types. A triangle of type S is one that is parallel to a shaded face, as in Figure 3.6(a).

A triangle of type W is one that is parallel to a white face, as in Figure 3.6(b). An

ideal triangle parallel to no face of its polyhedron will be of type N.
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Figure 3.8: Schematic picture of an ideal triangle intersecting faces of both colors.
The shading is generic, and might be reversed.

Lemma 3.13. Let D be an ideal triangle in P ∈ {P1, P2}. Let γ1, . . . , γ6 be the

segments of ∂D. Then the following hold:

(1) If D is of type S or type W, then at least two of the γi are parallel to interior

edges of P .

(2) If D is of type N, then no γi is parallel to an interior edge, and the three interior

faces of P intersecting ∂D are all white faces.

Proof. We consider two cases:

Case 1: ∂D intersects both white and shaded faces. Then D can be schematically rep-

resented by the left side of Figure 3.8. Label the stumps of interior edges e1, . . . , e4,

as in the figure; some of these are likely to be part of the same edge. Now, we can

pull segment γ2 off the boundary face and have ∂D intersect edge e2 instead. This

creates a disk D′ of area π/2, which could a priori be normal. However, by Case 2 of

Proposition 3.10, there are no normal disks that have two intersections with ∂M and

area π/2. Thus D′ fails some part of Definition 2.10.

Since D is normal by Lemma 3.11, the only way that D′ can fail to be normal is

if one of the new segments, γ′
1 or γ′

3, connects adjacent boundary and interior faces.

If γ′
1 violates normality, e1 is the same edge as e2. But then γ3 and γ5 must lie in the

same face, contradicting Lemma 3.11.
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If γ′
3 violates normality by connecting adjacent boundary and interior faces, we

can tighten ∂D′ by removing its intersection with e2 = e3. This creates a new disk

D′′ with area 0. Segment γ5 and the isotopic image of γ3 lie in distinct faces because

they are on opposite sides of edge e4. So D′′ is normal, and thus a boundary bigon.

Then we can conclude that e1 = e4, and the original disk D was parallel to face F ,

into which we have pulled γ3 (see Figure 3.8, right). So D is of type S or W. Notice

that both γ3 and γ5 are parallel to edges of F .

Case 2: All interior faces intersecting ∂D are the same color. If some segment γi is

parallel to an interior edge, we can isotope ∂D across that edge, into a face of a

different color, putting us in Case 1. Otherwise, if no γi is parallel to an interior edge,

the three interior faces must all be white. (Shaded faces are all triangles, in which

any arc connecting distinct ideal vertices is parallel to an edge.) By Lemma 3.11, the

segments γi all lie in distinct faces, so since none of them is parallel to an edge, D

cannot be parallel to a face. Thus D is of type N, and satisfies conclusion (2) of the

Lemma.

Corollary 3.14. In an admissible surface in E(J), an ideal triangle of type N cannot

be glued to a bigon or a triangle of type S.

Proof. Let F be a shaded face of P1 or P2, and D be a type S ideal triangle parallel

to F . Since shaded faces are all triangles, every interior segment of ∂D is parallel to

an interior edge of F , hence an edge of E(J). Similarly, both interior segments on the

boundary of a bigon are parallel to an edge of E(J). On the other hand, by Lemma

3.13 the boundary of a type N ideal triangle does not have any segments parallel to

interior edges.

3.4 Progressive arcs and length estimates

We are now ready to estimate the combinatorial length of surgery slopes on ∂E(J).

Definition 3.15. Let T be a torus of ∂E(J). Recall that, by Definition 3.5, its

universal cover T̃ contains a lattice of shaded and white faces, generated by a basis

〈s, w〉. If T is a crossing circle cusp, we will say that the w direction is meridional
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and the s direction is longitudinal. If T is a knot strand cusp, we will say that the

s direction is meridional and the w direction is longitudinal. (By Lemma 3.6, the

meridian and longitude of T are in fact aligned primarily in these directions.)

Thus if a segment γ spans opposite edges of a boundary face B ⊂ ∂E(J), it makes

sense to talk of γ lying in a meridional or longitudinal direction.

Definition 3.16. Let P ∈ {P1, P2}, and let D ⊂ P be an admissible disk. Then

D can intersect a boundary face B ⊂ ∂E(J) in one of three types of segments: a

longitudinal segment, connecting opposite edges of B in a longitudinal direction; a

meridional segment, connecting opposite edges of B in a meridional direction; or a

diagonal segment, connecting adjacent edges of B.

To estimate the combinatorial length of surgery slopes on ∂E(J) representing a

surgery slope, it helps to divide a curve into smaller pieces.

Definition 3.17. Let T be a torus of ∂E(J), and let γ ⊂ T be a non-closed simplicial

arc (see Definition 2.17). Lift γ to an arc γ̃ ⊂ T̃ , and cut T̃ into vertical strips along

meridional faces in the lattice. We say that γ is a progressive arc if γ̃ is contained

entirely in one of these vertical strips, and the endpoints of γ̃ lie on opposite sides of

the strip.

In other words, a progressive arc on a crossing circle cusp has endpoints on con-

secutive white faces, and constitutes a step in the s direction. A progressive arc on a

knot cusp has endpoints on consecutive shaded faces, and constitutes a step in the w

direction. In either case, a progressive arc γ can consist of (a) a single longitudinal

segment, (b) two diagonal segments connecting to different meridians, or (c) two di-

agonals with some number of meridional segments between them. These basic types

are shown in Figure 3.9.

Lemma 3.18. Let γ ⊂ ∂E(J) be a progressive arc. Then ℓ(γ) ≥ π/3.

Proof. Let H be an inward extension of γ (see Definition 2.18). For each admissible

disk Di ⊂ H bordering on a segment γi ⊂ γ, ℓ(γi, Di) = 0 if and only if Di is a

boundary bigon. By Proposition 3.10, every other type of disk contributes at least
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Figure 3.9: The three types of progressive arcs.

π/3 to ℓ(γ). So the only way to have ℓ(γ) < π/3 is if H consists only of bigons.

However, a string of bigons circles around a single edge of E(J), which means that

its intersection with a component of ∂E(J) cannot be a progressive arc.

Corollary 3.19. Let T be a torus of ∂E(J), and let s be a non-trivial surgery slope

on T . If T comes from a crossing circle Ci, let n be the number of crossings in region

Ri; if T comes from a component Kj of K, let n be the number of twist regions visited

by Kj, counted with multiplicity. Then, in either case,

ℓ(s) ≥
nπ

3
.

Proof. By Theorem 3.7, a surgery curve on a crossing circle corresponding to n cross-

ings must cross at least n (white) meridional faces, and any surgery curve on a

component of K passing through n twist regions with multiplicity must cross at least

n (shaded) meridional faces. Specifically, we can say that they must each contain at

least n progressive arcs. Thus the result follows from Lemma 3.18.

For surgery curves on a crossing circle cusp, which by Theorem 3.7 look like ns±w

in the basis 〈s, w〉, we can obtain a slightly better estimate.

Proposition 3.20. Let s ⊂ ∂E(J) be a surgery slope on a crossing circle cusp that

yields n crossings. Then we have the strict inequality

ℓ(s) >
nπ

3
.

Proof. By Corollary 3.19, we must only rule out equality. Equality occurs when

a simplicial curve c representing s contains exactly n progressive arcs, an inward
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extension of c picks up length exactly π/3 per progressive arc, and any part of c not

covered by progressive arcs contributes zero length. Consider such a curve.

If a progressive arc γ ⊂ c has combinatorial length π/3, it must have an inward

extension whose area comes from a single triangle D. D cannot be of type W, because

white faces are meridional on a crossing circle cusp, and thus a triangle of this type,

plus some bigons, cannot have their boundary segments add up to a progressive arc.

Thus D must be a triangle of type S or type N.

Let H be an inward extension of c. We claim that if H contains a type-N triangle,

then it consists entirely of type-N triangles. This is because by Corollary 3.14, a

type-N triangle D cannot be glued to a type-S triangle or a bigon, and any other

type of admissible disk glued to D would contribute extra area and bring the total

length above nπ/3. But if H consists entirely of type-N triangles, c consists entirely

of longitudinal segments and never travels in the w direction. Thus we can conclude

that H cannot contain any type-N triangles.

The only remaining possibility is that H consists entirely of type-S triangles and

bigons. But in this case, all of H is parallel to a single shaded disk, and again c never

traverses the lattice in the w direction. Thus the assumption that ℓ(c) = nπ/3 leads

to a contradiction.

We are now in a position to prove three of the theorems listed in the introduction.

Theorem 1.4. Let K ⊂ S3 be a link with a prime, twist-reduced diagram D(K). If

D(K) has at least two twist regions and every twist region of D(K) contains at least

6 crossings, then K is hyperbolic.

Proof. The assumption that D(K) has at least two twist regions ensures that all the

constructions and results of Section 3.1 apply. Thus, by Theorem 3.4, K is obtained

by Dehn surgery on the crossing circles of a hyperbolic link J . By Proposition 3.20,

every surgery slope si on a crossing circle Ci has combinatorial length ℓ(si) > 2π.

Therefore, by Theorem 2.22, E(K) is hyperbolic.

Theorem 1.9. Let K be a link in S3 with a prime, twist-reduced diagram D(K). Sup-

pose that every twist region of D(K) contains at least 6 crossings and each component

of K passes through at least 7 twist regions (counted with multiplicity). Then
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(1) any non-trivial Dehn filling of some but not all components of K is hyperbolic,

and

(2) any non-trivial Dehn filling of all the components of K is hyperbolike.

Proof. By Corollary 3.19, any non-trivial slope s on a component of K will have

ℓ(s) > 2π, and by Proposition 3.20, the same is true for surgery slopes on the crossing

circles. Thus all surgery slopes on ∂E(J) are sufficiently long. Conclusion (1) now

follows by Theorem 2.22, and conclusion (2) by Theorem 2.21.

Theorem 1.6. Let K ⊂ S3 be a link of k components with a prime, twist-reduced

diagram D(K). If D(K) has t ≥ 2 twist regions and at least 6 crossings in each twist

region, then

genus(K) ≥

⌈
1 +

t

6
−

k

2

⌉
,

where ⌈·⌉ is the ceiling function that rounds up to the nearest integer.

Proof. Let F be a Seifert surface for K, that is, an orientable incompressible surface

whose boundary is K. Then F contains a punctured surface G ⊂ E(J), where ∂G

consists of curves γ1, . . . , γk that run along K and curves γk+1, . . . γk+n along the

crossing circles. We can place G in normal form in the polyhedra P1 and P2 and

compute its combinatorial area. Observe that, by Corollary 3.19, the total length of

γ1, . . . , γk is at least 2tπ/3, because K passes through each twist region twice. By

Proposition 3.20, ℓ(γi) > 2π for i > k. Thus we can compute that

2π · genus(G) = 2π

(
1 −

1

2
χ(G) −

1

2
(k + n)

)

= 2π +
1

2
a(G) − πk − πn

≥ 2π +
1

2

k∑

i=1

ℓ(γi) − πk +
1

2

k+n∑

i=k+1

ℓ(γi) − πn

≥ 2π +
tπ

3
− πk

= 2π

(
1 +

t

6
−

k

2

)
.
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Since genus(F ) = genus(G) is an integer, we are done.

Observe that the inequality in the computation is an equality whenever G doesn’t

meet any crossing circles and consists of only type-W ideal triangles. This can happen

when the twist regions of D(K) always meet in threes and G lies in the projection

plane. In this situation, Theorem 1.6 actually gives the exact genus of K.
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Chapter 4

Diagrams of Arborescent Links

The remainder of this thesis is concerned with constructing an angled polyhedral

decomposition for the complement of an arborescent link. The actual construction,

which will be carried out in Chapters 5 and 6, relies in a concrete and fundamental

way on a particularly nice diagram of the link. This chapter is devoted to proving

that every arborescent link has such a diagram.

Following Gabai [10], we encode the diagrams of arborescent links using a combi-

natorial object called a weighted tree. In Section 4.1, we will define these trees and

use them to construct a link projection. In Section 4.2, we will describe the corre-

spondence between branches of a weighted tree and braids and rational tangles in the

diagram. This allows us to show that the links constructed from a tree are the same

arborescent links that we have defined in the Introduction. In Section 4.3, we will

use the weighted tree to simplify the link diagram into a maximally alternating form.

In this simplified diagram, every braid and every rational tangle has an alternating

projection, as do many larger pieces of the link. Finally, in Section 4.4, we will turn

the weighted tree into a new combinatorial object called an expanded tree, whose

structure is particularly well suited for triangulating the link complement.

49
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4.1 From weighted trees to arborescent diagrams

Definition 4.1. A weighted tree T is a finite, contractible 1-complex embedded in

S2. Let v ∈ T be a vertex and ei and ei+1 be edges emanating out of v, ordered

counterclockwise. Each such ordered pair is assigned an integer w(ei, v, ei+1), called

a weight. Thus every vertex of valence k will have k weights. (See Figure 4.1.)

v

v1

v2

v3
e1

e2
e3

1

2

−2 −2

3 4

Figure 4.1: A non-degenerate weighted tree. Weights of 0 are suppressed.

Definition 4.2. A weighted tree T is called degenerate if some terminal vertex v has

weight 0 or ±1, or if a divalent vertex v′ adjacent to a terminal vertex has weight 0.

All other trees are called non-degenerate.

Definition 4.3. Consider a crossing in a link diagram, in which the four endpoints

of the strands lie at the corners of a unit square. The crossing is called positive if the

strand of slope +1 lies over the strand of slope −1, and negative otherwise.

positive negative

Figure 4.2: Positive and negative crossings.

A weighted tree T encodes a link diagram DT (K), as follows. Start with any vertex

v of T , and represent v by a horizontal band. Delete from the band the interiors of

small 3-balls (bubbles) B1, . . . , Bk, with one Bi for each edge ei incident to v. The band

has a natural core direction c corresponding to a vector pointing counterclockwise

around v and a normal direction n corresponding to a vector pointing toward v.
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n

n

nnn

c

c

ccc

B1 B2 B3

Figure 4.3: The bands of v and v3 from Figure 4.1.

Between bubbles Bi and Bi+1 (in that order along the core direction c), we place

w(ei, v, ei+1) positive or negative crossings, as determined by the sign of the weight.

See Figure 4.3.

In a similar way, each vertex vi (i = 1, . . . , k) adjacent to v can be represented

by a vertical band with the same number of bubbles as incident edges, and positive

or negative crossings between the bubbles. Since we are performing the construction

in S3, it will be convenient to make the bubble corresponding to ei exterior, i.e.

containing the point at infinity. Now, the vertical band of vi can be glued across its

exterior bubble to the interior of bubble Bi. We perform the gluing in a way that

aligns the core direction of one band with the normal direction of the other band.

B1 B2 B3

Figure 4.4: The projection diagram constructed from the tree of Figure 4.1.
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We can iterate this process, with bands corresponding to vertices further from v

glued into smaller and smaller bubbles. Each edge of T corresponds to a sphere along

which the bubbles of two vertices are glued up. By the time we have traversed the

entire tree, all the bubbles have been glued along these spheres, and we have a link

projection as in Figure 4.4.

This construction contains one ambiguity: if we start the process from a differ-

ent vertex, the alignment of horizontal and vertical bands could be reversed. (For

example, this will be the case if we start from one of the vertices vi adjacent to

v.) Rotating the resulting link diagram would give Figure 4.4 with all the crossings

reversed, because positive crossings become negative when they are rotated. However,

the tree T does define a link projection uniquely up to isotopy and reflection.

Definition 4.4. An arborescent link is a link K ⊂ S3 whose projection diagram can

be constructed from a non-degenerate weighted tree T . The diagram DT (K) is called

an arborescent diagram.

Remark 4.5. Although our construction of arborescent link diagrams is inspired by

David Gabai’s monograph [10], there are two key differences in notation. Firstly,

Gabai uses a slightly different correspondence between weights and crossings. In

our notation, an alternating diagram is represented by a tree whose weights all have

the same sign; in his notation, the same diagram is represented by a tree in which

neighboring vertices have weights with opposite signs.

0

33

Figure 4.5: The connected sum of two trefoils, constructed from a degenerate tree.
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Secondly, unlike Gabai, we restrict our definition of arborescent links to non-

degenerate weighted trees. This restriction is necessary for our purposes, because

degenerate trees allow the construction of composite and even disconnected links.

For example, Figure 4.5 shows how to construct the connected sum of two trefoils

from a degenerate tree. Split and composite links are definitely not hyperbolic, and

many authors (for example, Wu [35, 36]) do not consider them to be arborescent.

We will prove in Theorem 4.11 that this restrictive definition of arborescent links is

equivalent to Definition 1.15, given in the introduction.

In the sequel, we will implicitly assume that weighted trees are non-degenerate.

We will simplify the tree T and its associated diagram DT (K) by a sequence of

moves, the first two of which we can describe right now.

(1) If a divalent vertex v has weight 0, collapse the vertex and the two edges. The

vertices v1 and v2 adjacent to v become identified to a single vertex, and the

weights on each side of the pair of edges are added to form a single weight. As

a result, some crossings may cancel. (See Figure 4.6.)

2

2

2

1

−1
⇒⇒

Figure 4.6: Collapsing a divalent vertex of weight 0 and the adjacent edges.

(2) At each vertex v, move all (non-zero) weights to one spot. Let Bi be a bubble

on the band of v. A flype of the band that rotates the interior of Bi by 180◦

about the core axis will move a crossing from one side of Bi to the other. (See

Figure 4.7.) In the tree T , this flype transfers a unit of weight from one side

to the other side of the corresponding edge ei, while also rotating the sub-tree

at the far end of ei. By repeating this procedure, we can collect all the weights

at v at one spot while concatenating all the crossings on its band into a single

twist region. In the process, some crossings may cancel.
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2

11

1−1

X

X
X

X Y

Y

Y

Y
BiBi

⇒⇒

Figure 4.7: A flype of a band moves a crossing to the other side of a bubble. Repeated
flypes combine the weights on a vertex to a single spot, possibly canceling crossings.

As a result of moves (1) and (2), each vertex of T with nonzero weight corresponds

to a twist region in DT (K), where the number of crossings in the twist region is the

absolute value of the weight. We will denote the weight of the vertex as simply w(v),

although we will continue to keep track of its location between two edges at v.

4.2 Branches, braids, and tangles

The correspondence between the tree and the arborescent diagram gives a way to

subdivide an arborescent link into pieces larger than single twist regions.

Definition 4.6. A vertex v of a weighted tree T is called a node if it adjoins at least

3 edges.

Definition 4.7. Let T ⊂ S2 be a weighed tree, and remove from T an open regular

neighborhood of every node. The complement is a disjoint collection of linear subtrees,

which may have truncated stump edges that connected to the nodes. Every such

subtree containing at least one vertex is called a branch. A terminal branch is one

that contains one terminal vertex of T and thus has only one stump edge, and an

interior branch has two stump edges, one at each end. See Figure 4.8.

Notation. Let v1, . . . , vn be the vertices of a branch U , where v1 is adjacent to a

stump edge. If U is an interior branch, let S0 and Sn be the spheres on the bands

of v1 and vn, respectively, that correspond to stump edges at the two ends of U . If
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terminal branches

interior branch

Figure 4.8: The branches of a weighted tree. (Weights are not shown.)

U is a terminal branch, let S0 again be the sphere corresponding to the stump edge

of U , and let Sn be a sphere on the band of vn bounding a bubble that contains no

crossings.

The branches of a tree correspond to braids and tangles in the diagram. Recall

from Definition 1.13 that a rational tangle consists of a 3-ball B and two boundary-

parallel arcs inside the ball.

Lemma 4.8. Let T be a weighted tree and K be the corresponding link. Then

(1) Every interior branch U ⊂ T defines a braid on 4 strings in DT (K), with

boundary at the spheres S0 and Sn. The complement of the braid is a product

region between two 4-punctured spheres.

(2) Every terminal branch defines a rational tangle B, whose boundary is ∂B = S0.

Proof. Conclusion (1) follows from an easy induction on n, the number of vertices

in the branch. If n = 1, then the band of v1 looks like the right side of Figure

4.3. It is clear that the strands of K form a braid, whose complement is a product

region between the two bubbles. Adding additional vertices and edges to the branch

continues the braid (twisting on different strings), and the conclusion continues to

hold.

Conclusion (2) follows from (1). On the band of vn, the bubble Bn inside sphere

Sn contains no crossings; thus the strings of K inside the bubble clearly form a

rational tangle. Now, the crossings on the bands of v1, . . . , vn build a braid (hence a

product region) between S0 and Sn, preserving the property that the strands of K

are boundary-parallel. Thus the sphere S0 bounds a rational tangle.
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Remark 4.9. In Definition 4.7, we have omitted the case when the entire tree T is

linear. Such a tree can be artificially split along some edge into two terminal branches.

It then follows from Lemma 4.8 that the resulting link K is obtained by gluing two

rational tangles – i.e., K is a two-bridge link.

One other special case is when T is a star, i.e., a tree with a single node. Following

Lemma 4.8, we can conclude that the corresponding link K is obtained by gluing

several rational tangles together in a cyclic fashion. Thus K is a Montesinos link

(also called a a star link), as in Figure 1.7.

By studying branches, we can check that arborescent links as defined via weighted

trees (Definition 4.4) are the same as the arborescent links defined in the Introduction.

Lemma 4.10. Let A be an arborescent tangle. (See Definition 1.14.) Then a pro-

jection diagram of A can be represented by a non-degenerate weighted tree T that has

been truncated along a single stump edge.

Proof. We proceed by induction on the number of rational tangles used to construct

A. If A is itself rational, then its projection can be simplified into a series of crossings

along horizontal and vertical bands, as in Figure 1.5. Thus, by Lemma 4.8, A can

be represented by a terminal branch U , which is a truncated tree satisfying the

lemma. (U is non-degenerate because rational tangles of slope 0 or ∞ are ruled out

by Definition 1.14, and rational tangles of slope ±1 are never needed by the discussion

preceding Definition 1.16.)

If A is not rational, then A = A1+A2, a non-trivial sum of arborescent tangles. By

the inductive hypothesis, some projection of each Ai can be represented by a truncated

tree Ti. To visualize the sum, we would like to place each marking disk Di ⊂ ∂Ai

into a simple position by a map of the 4-punctured sphere ∂Ai. It is well-known that

the mapping class group of a 4-punctured sphere is generated by Dehn twists along

horizontal and vertical curves [3, Theorem 4.5]; in other words, a sequence of twists

along horizontal or vertical bands will move Di into a simple position perpendicular

to the projection plane. Thus we have added a (possibly empty) 4-string braid to

the projection of Ai. By Lemma 4.8, this corresponds to adding a (possibly empty)

interior branch Ui to the stump edge of Ti.
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T1 T2

U1 U2

A1 A2

D1

D2
=

braidbraid

Figure 4.9: The inductive step in growing a tree to represent an arborescent tangle.

Now that D1 and D2 are clearly visible, we can glue A1 to A2 along these disks, as

in Figure 1.4. In the language of this chapter, we are gluing A1 and A2 into bubbles

along the same band, as in Figure 4.9. Thus, by joining T1 ∪ U1 and T2 ∪ U2 to the

same node, we obtain a truncated tree representing A.

Theorem 4.11. Definitions 1.15 and 4.4 are equivalent. Every arborescent link K

defined by a weighted tree T can be constructed from rational tangles; conversely,

every link constructed from rational tangles can be represented by a weighted tree.

Proof. Let K be an arborescent link as in Definition 4.4, constructed from a non-

degenerate weighted tree T . By Lemma 4.8, every terminal branch of T corresponds

to a rational tangle. Wherever two terminal branches U1 and U2 are adjacent at a node

v ∈ T , the rational tangles B1 and B2 are connected along a disk perpendicular to the

band of v, forming an arborescent tangle B1 + B2 as in Figure 1.4. (The restriction

to non-degenerate trees rules out rational tangles of slope 0 or ∞, and thus the sum

is non-trivial.) Continuing along T , we build a larger and larger arborescent tangle

by gluing on rational tangles along braids. When we parse the last terminal branch

of T , we glue the arborescent tangle to a rational tangle, forming an arborescent link

that satisfies Definition 1.15.

For the converse, let K be an arborescent link as in Definition 1.15, obtained

by gluing arborescent tangles A and A′ along their entire boundaries. By Lemma

4.10, each of these tangles can be represented by a non-degenerate truncated tree. As

above, the gluing map from ∂A to ∂A′ can be realized by a 4-string braid [3, Theorem

4.5]. Thus, by joining the two truncated trees along an interior branch representing

the braid, we obtain a weighted tree T that represents the entire link K.
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4.3 Maximally alternating diagrams

Now that we have a correspondence between weighted trees and arborescent links as

defined in the Introduction, we would like to simplify the link diagram in a way that

will allow us to read off the length of each rational tangle. As a first step, we will

bring the braids and rational tangles of DT (K) into an alternating projection.

Lemma 4.12. Let U ⊂ T be a branch. By flyping the bands of several vertices, as in

Figure 4.7, we can ensure that the 4-braid corresponding to U has one strand that is

free of crossings.

Proof. In simplifying move (2), we have moved the weights of each vertex vi ⊂ U

to one spot. Thus, in the band corresponding to vi, only two strands pass through

crossings. Proceeding from the outside in, from sphere S0 toward Sn, we can flype

the bands to ensure that, for example, every crossing in a horizontal band is on the

left and every crossing in a vertical band is at the top. Then the bottom right strand

of the braid will be free of crossings, as in Figure 4.10.



S0 S0

Sn Sn

⇒

Figure 4.10: Every braid corresponding to a branch U ⊂ T can be given a projection
with one free strand. In the language of Theorem 4.13, the word of U is Ω = L2R−1L2.

Theorem 4.13. Let U ⊂ T be a branch containing vertices v1, . . . , vn. Then the

braid between spheres S0 and Sn can be rearranged to have an alternating projection.

This gives a new arborescent diagram DT ′(K), corresponding to a tree T ′ in which U

has been replaced by a branch U ′.

The relationship between T and T ′ is described at the end of the proof.
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RL

Figure 4.11: Braid moves L and R.

Proof. Assume, without loss of generality, that the braid of U has been positioned as

in the right panel of Figure 4.10. That is: sphere S0 lies outside the band of v1, and

the remaining bands are inserted into smaller and smaller bubbles; the band of v1 is

horizontal; and U has a free strand on the lower right. If ai is the weight on vertex

vi, we may also assume that a1 > 0.

We can represent a left-hand twist on the left side of a horizontal band by L and

a right-hand twist on the top side of a vertical band by R. (See Figure 4.11; notice

that both R and L encode positive crossings.) Then the braid between spheres S0

and Sn is represented by the word

Ω =

{
La1Ra2 · · ·Lan if n is odd,

La1Ra2 · · ·Ran if n is even,

read as we progress from the outside in. It is easy to check that the braid is alternating

if and only if all the ai have the same sign. Since we have assumed that a1 > 0, our

goal is to make all the ai positive.

If the braid is not alternating, find the first sub-word of Ω of the form RL−1 or

LR−1. We will rotate the bubble B just inside this sub-word by a half-turn about a

skewer of slope −1. (See Figure 4.12.) This has the effect of replacing RL−1 by L,

or LR−1 by R, reducing the number of crossings in the braid by one. Inside bubble

B, positive crossings at the top become negative crossings on the left, and vice versa.

Thus the move replaces the rest of the word Ω according to the rule

L ↔ R−1, R ↔ L−1.
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R

LL−1

B
B ⇒

Figure 4.12: If a braid is not alternating, rotating about a line of slope −1 reduces
the number of crossings.

Observe, as well, that this rotation preserves the property that the braid has a free

strand on the lower right.

We can now continue scanning Ω for the next instance of RL−1 or LR−1, and

rotate the braid in the same fashion. Each iteration reduces the length of Ω by one

letter, which corresponds to removing a crossing from the braid. Thus the process

will terminate. In the end, we have replaced Ω by a word

Ω′ =

{
Lb1Rb2 · · ·Lbm if m is odd,

Lb1Rb2 · · ·Rbm if m is even,

where b2, . . . , bm are all positive and b1 is non-negative. (The case b1 = 0 occurs if Ω

started with LR−1 and thus the first crossing of the modified braid is an R-crossing.)

Since there are no sign changes, the modified braid is now alternating.

Let us explicitly describe the tree T ′ corresponding to the new link diagram. U has

been replaced by a branch U ′, with vertex weights b1, . . . , bm. The subtree of T that

was adjacent to U at vn may also be modified slightly, for each rotation interchanges

horizontal and vertical bands. Therefore, if the total number of rotations is odd (i.e.

if m has the opposite parity from n), all the vertex weights on the subtree inside

sphere Sn will switch their sign. Because this switch occurs in unison, any braid that

was previously made alternating will remain alternating.

Remark 4.14. In case b1 = 0, we will need to repeat simplifying move (1) to remove

the redundant vertex v1 of the new tree T ′. (See Figure 4.6.)
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2 1 3 ⇒⇒

Figure 4.13: Adjusting the terminal vertex in a modified branch U ′.

If U is a terminal braid, a tiny bit of fussing may also be required to ensure that

the new tree T ′ is non-degenerate. That is, if bm = 1, we need to move the final

crossing to the band of vm−1, as in Figure 4.13. Since bm−1 ≥ 1 by construction, one

move of this sort will suffice.

Remark 4.15. When U is a terminal branch, Conway’s classification of rational

tangles by slope [5] implies

1

b1 +
1

b2 +
1

. . . +
1

bm

=
1

a1 +
1

a2 +
1

. . . +
1

an

= s,

where s is the slope of the tangle. (See Figure 1.5.) The bi give its shortest continued

fraction expansion. If we define the length of U to be ℓ(U) =
∑

i |bi|, the length of a

terminal branch will agree with the length of its rational tangle (see Definition 1.16).

Once we have simplified the branches of a weighted tree T , ensuring that they

correspond to alternating braids, we can read off the length of each rational tangle in

terms of weights on the tree. The next step is to look at the nodes.

Definition 4.16. Let v be a node of a weighted tree T . We say that v is an alternating

node if the weights of v and every vertex adjacent to v all have the same sign. (For the

purpose of this definition, 0 has the same sign as any positive or negative number.)

The braids and rational tangles that meet at the band of an alternating node v

combine to form an alternating sub-diagram of DT (K).
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Definition 4.17. Let DT (K) be an arborescent diagram represented by a weighted

tree T . Suppose that in every branch of T , all vertex weights are non-zero and have

the same sign. Let v ∈ T be a node adjacent to edges e1, . . . , ek. If ei is part of

a terminal branch Bi, we define ℓi = ℓ(Bi) to be the number of crossings in the

corresponding tangle; otherwise, define ℓi = ∞. Suppose that, for each i,

1 >





1

li
+

1

li+1

if v is an alternating node,

1

li−1
+

1

li
+

1

li+1
if v is a non-alternating node.

If this condition is satisfied for every node of T , the diagram DT (K) is called balanced.

For alternating nodes, Definition 4.17 is more inclusive than Definition 1.17.

Theorem 1.18, which guarantees that the complement of a balanced link has an

angled polyhedral decomposition, will hold with this looser definition. In fact, as the

next theorem shows, we can turn many nodes of T into alternating nodes.

Theorem 4.18. Let DT (K) be a diagram of an arborescent link. We can modify the

diagram until the corresponding weighted tree T satisfies the following conditions:

(1) In every branch of T , all vertex weights are non-zero and have the same sign.

(2) Every node of T is either alternating or has weight 0 (or both).

Furthermore, this alteration preserves the length of each terminal branch. Thus a

balanced diagram will remain balanced.

Proof. In the simplification process of Section 4.1, we removed all divalent vertices of

weight 0. This, combined with Theorem 4.13, guarantees condition (1). It remains

to prove that we can satisfy condition (2) without breaking (1).

Suppose that some node v ∈ T fails condition (2): it is non-alternating and (with-

out loss of generality) w(v) > 0. We will use the property that v is not alternating to

simplify the diagram. At each step, we will switch the weight of a neighboring vertex

vi (and, if vi is part of a branch, on the entire branch) from negative to positive,
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v1
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⇒⇒

Figure 4.14: When adjacent nodes have opposite weights, rotating about a diagonal
axis removes a crossing from DT (K).

reduce w(v) by one, and remove a crossing from DT (K). This procedure will termi-

nate when one of two things happens: either all adjacent vertices have non-negative

weights, or w(v) is reduced all the way to zero. In either case, v will satisfy condition

(2), and we can move on to another node.

Suppose, therefore, that w(v) > 0 but w(v1) < 0 for a neighboring vertex v1.

Suppose, without loss of generality, that the band of v is vertical and the band of v1

horizontal. By performing flypes on each band, as in Figure 4.10, we can also assume

that the positive crossings at v and the negative crossings at v1 are both located next

to the sphere S that separates the two bands. In other words, we have the situation

depicted in Figure 4.12, represented by a word RL−1.

If the vertex v1 is part of a branch U , we proceed exactly as in the proof of

Theorem 4.13. That is: we rotate the bubble just interior to the first negative L-

crossing about a diagonal skewer, removing a crossing from the diagram and replacing

RL−1 by L. Because all the vertices of U start out with negative weights, there are

no more sign changes in its word Ω. Thus, after the single diagonal flip, U is replaced

by a branch U ′ with all positive weights, and its length remains unchanged. (The

crossing removed during the flip came from the band of v, not from the braid.)

If the vertex v1 is not part of a branch, it must be another node. Although we

have not yet addressed this situation, the procedure is the same. In the diagram, we

rotate the band of v1 about a diagonal skewer, removing a crossing. The alteration

to the tree T is a bit more complex. The node v1 now corresponds to a vertical band,

and is now two steps away from v. In between v and v1 is a new divalent vertex with
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weight 1, corresponding to the single L-crossing created during the flip. This new

vertex forms a new, very short, interior branch. The weight w(v) is reduced by one,

while the weight w(v1) switches sign and is then reduced by one. (On the sub-tree

that starts at v1, all the weights will also switch signs, just as in Theorem 4.13). The

net effect is that DT (K) has one less crossing, at the expense of w(v), and one more

vertex adjacent to v has positive weight. See Figure 4.14.

Therefore, whether or not v1 is part of a branch, we remove a crossing from the

band of v, as claimed. We can repeat this step as many times as needed, continuing

to remove crossings from DT (K) until every node satisfies condition (2).

4.4 Unloaded nodes and expanded trees

For the constructions of the next chapter, we will need the bands corresponding to

nodes of T to be free of crossings. Thus for each node v ∈ T with w(v) 6= 0 (which,

by Theorem 4.18, must be an alternating node) we will “unload” the weight w(v) into

one of the branches meeting at v, in a partial undoing of simplifying move (1). See

Figure 4.15 for a graphical description of this procedure.

In unloading the weight of a node v, we can typically choose from multiple

branches. We make the choice as follows. If every edge emanating from v con-

nects to another node, we unload the weight w(v) by creating a new branch between

v and v′, leaving the diagram unchanged as in Figure 4.15. If v is adjacent to one or

more interior branches, we move w(v) into any one of those branches. The remaining

2
2

v

v

branches

⇒⇒

Figure 4.15: We move the weight of a node v into a neighboring branch, creating a
“dummy vertex” in between. As a result, the band of v has no crossings.
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Figure 4.16: Turning a weighted tree T into an expanded tree E.

case is when every edge at v is part of a terminal branch, i.e., K is a Montesinos link.

In this case, we move w(v) into the shortest terminal branch.

In each case, the crossings on the band of v either add to an alternating braid, or

start a new alternating braid. Thus every alternating node of T remains alternating.

Definition 4.19. Let T be a weighted tree in which every node has zero weight. We

will use T to construct an expanded tree E, as follows. Every node of T defines a

node of E, of the same valence. Every branch U ⊂ T also defines a branch B ⊂ E,

which has one vertex for each crossing in the braid of U . (See Figure 4.16.)

We think of a node v ∈ E as horizontal or vertical according as the corresponding

band of DT (K) is horizontal or vertical. Vertices of E corresponding to positive or

negative crossings in a vertical band are labeled by R or R−1, respectively. Similarly,

vertices of E corresponding to crossings in a horizontal band are labeled L or L−1.

Note that, just as with weighted trees, the nodes of E correspond to bands with

no crossings. Just as with weighted trees, the interior and terminal branches of an

expanded tree E correspond to braids and rational tangles, respectively.

If we concatenate the vertex labels of a branch B ⊂ E into a single word in L and

R, we get exactly the word Ω that was described in the proof of Theorem 4.13. The

notion of length for rational tangles also extends naturally to branches of E. Thus

the length ℓ(B) of a branch B is equal to the number of vertices in B, the number of

letters in Ω, and the number of crossings in the corresponding braid.

Definition 4.20. Let v be a node of an expanded tree E. We say that v is alternating

if every branch vertex adjacent to v is labeled with the same positive or negative power
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of L or R. (The node in Figure 4.16 is an example.) Alternating nodes of E come

from alternating nodes of T .

Definition 4.21. Let e be an edge of an expanded tree E, connecting a node v to a

branch vertex v1. We call e an exceptional edge if the band of v is vertical and v1 is

labeled R±1, or if the band of v is horizontal and v1 is labeled L±1. A node v ∈ E

adjacent to an exceptional edge is called an exceptional node.

Exceptional edges are created when the weight of an alternating node is unloaded

into a branch. In Figure 4.16, the lower left branch ends in an exceptional edge.

We can now summarize the results of this chapter in terms of expanded trees.

Theorem 4.22. Every arborescent link K ⊂ S3 can be represented by an expanded

tree E such that

(1) in any branch B ⊂ E, the vertex labels are all positive or all negative,

(2) every exceptional node v ∈ E is alternating,

(3) every exceptional node v ∈ E is adjacent to one exceptional edge, and

(4) if K is not a Montesinos link, all exceptional edges belong to interior branches.

Proof. Conclusion (1) is a restatement of Theorem 4.13. Conclusion (2) follows from

Theorem 4.18, because the only nodes of T whose weights are pushed into a branch

are alternating nodes. Conclusions (3) and (4) are a consequence of the choices we

make in unloading the weight of a node: all the crossings on the band of a node are

pushed into a single branch, which is interior when K is not a Montesinos link.

Remark 4.23. It is worth pointing out that some information is lost in constructing

an expanded tree. Unlike weighted trees, where the location of weights at a vertex

encodes the location of crossings in a band, the vertex labels L or R do not preserve

this information. As a result, an expanded tree is not enough to reconstruct a link,

because it does not distinguish between certain mutants. However, we will see in

Chapter 5 that the vertex labels of E carry just enough data to aid us in subdividing

the link complement. In Chapter 6, we will see that when E represents a balanced

diagram, its edges correspond to parameters for angle structures.



Chapter 5

Arborescent Link Complements

The last chapter described a strong correspondence between a weighted tree T and

an arborescent diagram DT (K). We can now use the pieces of T to construct a topo-

logical decomposition of the link complement. Recall, in particular, that in Definition

4.7, we subdivided a weighted tree into terminal branches and interior branches that

come together at nodes (vertices of valence at least 3). The corresponding subdivision

of the expanded tree E allows us to cut up an arborescent link complement into three

types of pieces:

(1) Product regions. Each branch of an expanded tree E describes a braid in DT (K).

The complement of such a braid is a product region that we will subdivide into

layers of tetrahedra. The word Ω labeling the branch controls the combinatorics

of the subdivision.

(2) Clasps, corresponding to the last two vertices of each terminal branch in E. A

clasp will actually not need any 3-dimensional pieces, and will be constructed

by folding a pleated surface in a particular fashion.

(3) Prisms, as in Example 2.6. Each band corresponding to a node of E will give

two prisms in the link complement.

This chapter is devoted to describing these pieces in some detail.

67
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5.1 Product regions

Recall, from the last chapter, the correspondence between branches of an expanded

tree E and product regions in the link complement. We will subdivide each such

product region into layers of tetrahedra. To describe this subdivision, we need a

better understanding of triangulations of a 4-punctured sphere.

Definition 5.1. Let S be a 4-times punctured sphere. An arc pair γ ⊂ S consists of

two disjoint, properly embedded arcs γ1 and γ2, such that γ1 connects two punctures

of S and γ2 connects the remaining two punctures of S. A slope on S is an isotopy

class of arc pairs.

To visualize slopes, it helps to picture S as a pillowcase surrounding the unit square

in R2, with punctures at the corners. Any arc pair γ ⊂ S can then be straightened so

that its intersections with the front of the pillow have a well-defined Euclidean slope.

Thus slopes on S are in 1-to-1 correspondence with elements of Q = Q ∪ {∞}.

It is easy to check that at most 3 slopes can be disjoint on a 4-punctured sphere;

such a choice of 3 disjoint arc pairs subdivides S into ideal triangles. (See Figure 5.1.)

Ideal triangulations of S can be neatly represented by the Farey complex F , shown

in Figure 5.2. Vertices of F correspond to slopes, edges of F to disjoint slopes, and

triangles to ideal triangulations of S.

Now, let B be an interior branch of E. By Theorem 4.13, we may assume that E

defines an alternating braid, whose complement is a product region between spheres

S0 and Sc (where c = ℓ(B) equals the number of vertices in B and the number of

Figure 5.1: Arcs of slope 0, 1, and ∞ give an ideal triangulation of a 4-punctured
sphere S.
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Figure 5.2: The Farey graph F of a 4-punctured sphere (graphic by Allen Hatcher).

crossings in the braid). Sphere S0, exterior to the braid, intersects the projection

plane in horizontal and vertical edges whose slopes we will identify with 0 and ∞,

respectively. Once we have fixed this identification, we can say that horizontal and

vertical edges on Sc have slope ϕ(0) and ϕ(∞), where ϕ : Q → Q is the map on

slopes induced by isotopy through the entire product region.

Notice that slopes 0 and ∞ are disjoint, and thus 0 and ∞ are connected by an

edge b ⊂ F . Similarly, ϕ(0) and ϕ(∞) are connected by an edge t ⊂ F .

Lemma 5.2. Let Ω be the word in R and L obtained by concatenating the vertex

labels of B. Then the map ϕ : Q → Q can be identified with Ω. In particular, each

letter Ωi of Ω corresponds to a Farey triangle τi between b and t. If Ωi = R, the path

from b to t takes a right turn across τi; if Ωi = L, the path from b to t takes a left

turn across τi.

Proof. Recall that a vertex label of L corresponds to a positive crossing in a horizontal

band, and a vertex label of R corresponds to a positive crossing in a vertical band. To

prove this lemma, it suffices to identify the action of L and R on the Farey graph F .

By sliding horizontal and vertical arcs along the braid from the inner sphere (closer
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0 0
∞ ∞

L R

Figure 5.3: Braid move L takes slopes 0 and ∞ to 1 and ∞, respectively. R takes
slopes 0 and ∞ to 0 and 1, respectively.

to Sc) to the outer sphere (closer to S0), we can see in Figure 5.3 that

L(0) = 1, L(∞) = ∞, R(0) = 0, R(∞) = 1.

This determines their action on all slopes: L acts on the Farey graph by a left turn

fixing ∞, and R acts by a right turn fixing 0.

If we read the word Ω from right to left, the actions of L and R are combined (in

the usual sense of function composition) to give the map ϕ from slopes on Sc to slopes

on S0. On the other hand, if we read Ω from left to right, it tells us the sequence

of turns across Farey triangles that gets from b to t. That is, if the ith letter of Ω is

Ωi = L, we take a left turn across τi; if Ωi = R, we take a right turn across τi.

The key consequence of the braid of B being alternating is that the path described

by Ω is non-backtracking: in taking right and left turns while going forward from b to

t, we only cross each triangle τi once. Thus the number of these triangles is exactly

c = ℓ(B), the number of crossings in the braid.

Example 5.3. If Ω = R2L2, two right turns followed by two left turns take b to the

edge t connecting slopes ϕ(0) = 2
5

and ϕ(∞) = 1
2
. (See Figure 5.4.)

Let b = e0, e1, . . . , ec = t be the sequence of Farey edges interpolating between

slopes on S0 and slopes on Sc. Each ei, 1 ≤ i ≤ c−1, can be thought of as a diagonal

exchange between τi and τi+1. We will use these diagonal exchanges to construct

tetrahedra.
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Figure 5.4: When ϕ = Ω = R2L2, we can get from b to t with two right turns followed
by two left turns.

Definition 5.4. For each ei, 1 ≤ i ≤ c − 1, construct the product region S×[0, 1],

where S is a 4-punctured sphere. Give the bottom surface S×0 the triangulation τi,

and the top surface S×1 the triangulation τi+1. Now, for each of the two shared slopes

corresponding to endpoints of ei, pick an arc pair γ of that slope and collapse γ×[0, 1]

to γ×0. The result is a union of two tetrahedra, denoted ∆i = ∆(ei), connected

across two arc pairs whose slopes are the endpoints of ei. The boundary of this layer

of tetrahedra consists of two pleated surfaces, Si on the bottom and Si+1 on top, each

homotopic to S. (See Figure 5.5.)

Figure 5.5: The layer of tetrahedra corresponding to the Farey edge e1 from 0 to 1
can be thought of as exchanging diagonals of slope ∞ for diagonals with slope 1/2.
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Figure 5.6: The pleated surface corresponding to a crossing in a braid can be seen as
living either right before or right after the crossing. In this figure, arcs with the same
dashing pattern have the same slope.

We can glue the top of tetrahedron layer ∆i to the bottom of ∆i+1, since their

triangulations come from the same Farey triangle τi+1. In this way, we obtain a stack

of tetrahedron layers, progressively interchanging diagonals. Since the bottom of ∆1

is identified with S0 and the top of ∆c−1 with Sc, we have a triangulation of the

product region. Note that this stack of tetrahedra is homeomorphic to S×[0, 1] if

and only if b and t have disjoint endpoints. If b and t share an endpoint, all the

triangulations share the corresponding slope, and the entire stack of tetrahedra is

pinched along the corresponding arc pair.

Remark 5.5. The correspondence of Lemma 5.2 identifies crossings in the braid

with pleated surfaces between S0 and Sc. The pleated surface Si can be concretely

visualized as living near the ith crossing in the braid; the edges of its triangulation are

the ones that look vertical and horizontal in the projection plane immediately before

and after the crossing. Figure 5.6 shows two views of the same pleated surface.

Remark 5.6. It follows from the last remark that the Farey triangles τ1 and τc force

a choice of diagonal for spheres S0 and Sc, respectively. That is, S0 will receive

a diagonal of slope 1 or −1 depending on whether the letters of Ω have positive or

negative powers. Similarly, the triangulation on Sc, which already contains two slopes

coming from the vertices of t, will receive a third slope from the third vertex of τc.

Remark 5.7. If the braid has only one crossing, i.e. c = 1, Definition 5.4 results in

no tetrahedra at all. In this scenario, we glue S0 directly to S1. (In Figure 5.6, the
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outer sphere would be S0 and the inner sphere S1.) Notice that, just as in Remark

5.6, the direction of the single crossing still forces a choice of diagonals, completing a

triangulation of the identified sphere.

5.2 Clasps

We have just described how to triangulate the product region corresponding to an

interior branch of E. For terminal branches corresponding to rational tangles, the

procedure is very similar. We once again have a sphere S0, exterior to the tangle, and

a sphere Sc, which bounds a bubble containing no crossings. These spheres again give

rise to Farey edges b and t. The intermediate triangles τ1, . . . , τc define a sequence of

triangulations of a 4-punctured sphere, giving rise to layered stack of tetrahedra.

The one important difference is that in constructing the triangulation correspond-

ing to a terminal branch, we stop at triangle τc−1. That is, the final layer of tetrahedra

is ∆c−2, whose top is the pleated surface Sc−1.

Definition 5.8. On the pleated surface Scl = Sc−1, let the peripheral edges be the

two edges whose slope is the Farey vertex of τc−1 opposite edge ec−1.

Following Remark 5.5, we can picture Scl as lying near the penultimate crossing

of the braid of B. Its peripheral edges are the two edges that would be replaced if we

were to glue on the tetrahedron layer ∆c−1: that is, the peripheral edges run parallel

to the band containing the last pair of crossings. (See Figure 5.7.)

Figure 5.7: The peripheral edges of pleated surface Scl are dashed. Notice that the
remaining four edges are all isotopic.
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⇒

⇓ isotopy
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Figure 5.8: Folding the pleated surface Scl.

Instead of gluing another tetrahedron layer to Scl, we will identify its faces in pairs

by folding along the two peripheral edges. Figure 5.8 shows that this creates exactly

the desired effect of connecting the strands of the braid in pairs while twisting along

the band, producing the last pair of crossings.

The four non-peripheral edges of Scl get identified to a single edge, called the core

of the rational tangle. The two faces that remain after folding meet at the core of

the tangle, in the manner of a clasp. Outside the clasp, we have a standard product

region, subdivided into layers of tetrahedra all the way out to sphere S0.

Remark 5.9. Note that in triangulating a rational tangle with c crossings, we have

used c−2 pairs of tetrahedra. Thus if a rational tangle contains only two crossings, no

tetrahedra are needed at all: we simply identify the 4-punctured sphere S0 with Scl,

and fold as above. (The terminal branches of length 2 that correspond to these tangles

will be called short.) Because our weighted trees are non-degenerate (see Definition

4.2), we do not need to deal with rational tangles containing a single crossing.
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Remark 5.10. This way of triangulating rational tangles is not new. Sakuma and

Weeks [31] use exactly this method to construct the (presumably canonical) trian-

gulations of two-bridge link complements. To get a two-bridge link, one needs to

cap off both boundary spheres of a 4-string braid, corresponding to clasps with the

triangulations of τ2 on one end and τc−1 on the other end.

In constructing layered triangulations from the branches of an expanded tree E,

we have made use of a number of objects: the Farey complex F , the word Ω, and

of course the arborescent diagram DT (K). Their correspondence to the pieces of the

link complement is summarized in Table 5.9.

Edge of expanded tree E
Farey edge ei

Tetrahedron layer ∆i

Pleating angle wi

Non-node vertex of E
Farey triangle τi

Pleated surface Si

Letter Ωi = L
Crossing in DT (K)

Node of E

Pair of prisms

Table 5.9: The three correspondence classes of objects used to construct a polyhedral
decomposition of the link complement.

5.3 Prisms

Let v be a node of an expanded tree, i.e. a vertex of valence k ≥ 3. Recall from

the last chapter that v corresponds to a band in the projection diagram, intersecting

bubbles B1, . . . , Bk. (See Figure 4.3.) In Section 4.4, we have ensured that the band

contains no crossings.

We will subdivide the complement of the band and the bubbles into two ideal

polyhedra, as follows. First, cut the picture along the projection plane. This yields

two identical pieces, each homeomorphic to a 3-ball; we focus our attention on the

ball in front of the projection plane. Next, contract each rectangular piece of the

ribbon to a segment. This identifies each pair of isotopic edges on adjacent bubbles

to a single edge, and shrinks strands of K to ideal vertices. (See Figure 5.10.)
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⇒⇒

Figure 5.10: Constructing a prism from the band of a node.

The result is an ideal polyhedron P that has rectangular faces F1, . . . , Fk (one for

the front side of each bubble) and two k-gon faces (one for each region of the projection

plane in the complement of the band). Thus P is a prism, as defined in Example 2.6.

(In [32, Section 6.8], Thurston calls the this type of polyhedron a drum.) We will

call the k-gon faces the top and bottom faces of P , and the rectangles bordering on

bubbles the lateral faces of P . The ideal polyhedron behind the projection plane is

an identical prism P ′, whose lateral faces border on the back sides of the bubbles.

Prisms P and P ′ are glued to each other along the top and bottom faces, which

came from regions of the projection plane. They also share the same lateral edges, but

the interiors of their lateral faces are disjoint. Matching lateral rectangles of P and P ′

are glued along their edges to form 4-times punctured spheres S1, . . . , Sk bounding

bubbles B1, . . . , Bk. These spheres connect the pair of prisms to other pieces of the

link complement.

Recall that the band of v has one bubble Bi for each adjacent edge ei. If ei

connects to another node, sphere Si connects P ∪ P ′ to another pair of prisms. If ei

is the stump edge at the end of a branch, Si is a pleated surface bounding a product

region. In the latter case, the triangulation of the product region will actually force

a choice of diagonals on the rectangular faces Fi ⊂ P and F ′
i ⊂ P ′, by Remark 5.6.

Our goal in the next chapter will be to give convex angles for the polyhedral

decomposition of the link complement. In particular, the individual pieces will need to

be angled polyhedra, as in Definition 2.3. The dihedral angles of a single tetrahedron

are easy to understand and parametrize; for prisms, it takes a little work to ensure

that a given choice of dihedral angles produces a convex hyperbolic polyhedron.
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Definition 5.11. A polyhedron P that is obtained from a prism by adding diagonals

to some lateral faces is called a bent-faced prism. If no diagonals have been added,

we may call P a flat-faced prism for emphasis.

If P is a flat-faced prism, we will assign dihedral angles as in Figure 2.1. That

is, the top and bottom edges of every lateral face Fi are labeled with the same

internal angle αi ∈ (0, π). So long as αi + αi+1 < π, we can choose internal angles

θi,i+1 = π − αi − αi+1 for the lateral edges.

Lemma 5.12. Let P be a flat-faced prism, with angles assigned as above. Then P is

an angled polyhedron if and only if

(1) αi + αj < π for all i 6= j and

(2)
∑k

i=1 αi > π.

Proof. We have ensured by construction that all dihedral angles are positive, and that

the external angles around each ideal vertex sum to 2π. Thus P will be an angled

polyhedron if and only if it satisfies the last condition of Definition 2.3:

(∗) for any normal curve γ ⊂ ∂P that does not encircle a single vertex,
∑

γ ǫi > 2π.

Consider such a curve γ, and let m be the number of intersections between γ and the

top and bottom faces of P .

Case 0: m = 0. If γ is disjoint from the top and bottom faces, it must be a belt curve,

as in Figure 5.11(a). Then γ picks up the external angles from all the lateral edges.

For each lateral edge, the external angle is π − θi,i+1 = αi + αi+1, so the angle sum is

greater than 2π precisely if and only if
∑n

i=1 αi > π.

Case 1: m = 1. Suppose, without loss of generality, that γ intersects the top face,

entering it at the edge e1 and exiting at edge ej . Since γ is disjoint from the bottom

face, it must complete its loop through the lateral faces F1, . . . , Fj. Thus γ encircles

two or more vertices of the top face, as well as the edges e2, . . . , ej−1 that connect

them. (See Figure 5.11(b).)

Consider the first vertex v1,2 inside γ, and notice that γ intersects every edge into

that vertex except e2. Because the external angles around v1,2 must sum to 2π, and
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Figure 5.11: Normal curves in an angled prism.

α2 < π < 2π − α2, pulling γ to the other side of the vertex will reduce its exterior

angle sum. We can continue shortening γ in this fashion until it encircles the last

vertex vj−1,j, around which the external angles sum to 2π by construction. Thus the

original angle sum of γ was greater than 2π, and (∗) is satisfied automatically.

Case 2: m ≥ 2. Let us remove from γ its intersections with the top and bottom faces.

This leaves arcs γ1, . . . , γm, ordered along an orientation of γ. If any γi runs from the

top face back to the top face (or bottom to bottom), then its exterior angle sum is

already at least 2π, by Case 1. Thus we may assume that each of the γi runs from

the top to the bottom (or vice versa).

We claim that if γ1 ends in lateral face Fi, its external angle sum is at least

2π − 2αi. If γ1 only passes through Fi, this expression gives the exact value. But if

γ1 starts in some other face, it will intersect all but one edge around some vertex of

that face. Thus pulling the arc γ1 into Fi will reduce the external angle sum at each

step, as in Case 1.

Now, consider the next arc γ2. Because γ intersects each edge of P at most once,

γ2 starts in lateral face Fj , with j 6= i. By the same argument as above, the external

angle sum of γ2 is at least 2π − 2αj. Because we have assumed that αi + αj < π,

these sums add up to more than 2π.

Conversely, for any choice of i 6= j, a curve γ as in Figure 5.11(c) will have its

external angle sum equal to 4π − 2αi − 2αj, so condition (1) is necessary.
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Figure 5.12: Bending a lateral face of a prism along a diagonal changes the angles of
neighboring edges.

Now that we understand the dihedral angles of flat-faced prisms, we can bend

the diagonals one by one. Suppose a prism P has been assigned dihedral angles, as

above. We will choose a diagonal for lateral face Fi and give it dihedral angle π−2δi,

where δi ∈ [0, π/2). We will then adjust the angles on the lateral edges of Fi, as

well as the top and bottom edges of Fi−1 and Fi+1. Edges sharing a vertex with the

new diagonal increase their angle by δi, and ones that do not share a vertex with the

diagonal decrease their angle by δi. (See Figure 5.12.)

We can then repeat this procedure, bending some other lateral face Fj along a

diagonal. Each time, the change of angles is local: the only edges whose dihedral

angles change are the lateral edges of Fj , the top and bottom edges of Fj±1, and (of

course) the new diagonal. When we have bent all the faces as needed, the top edge of

a face Fi will have a dihedral angle of the form αi ± δi−1 ± δi+1, counting indices mod

k. (The signs of ±δi−1 and ±δi+1 will be the different if and only if the corresponding

branches have vertex labels with the same positive or negative powers of R and L, or

equivalently, if and only if the diagonals of Fi−1 and Fi+1 have the same slope on the

prism.) Note also that flat-faced prisms correspond to choosing δi = 0 for all i.

Remark 5.13. By Remark 5.6, the diagonals of Fi ⊂ P and F ′
i ⊂ P ′ have the same

slope. However, relative to the top and bottom of those prisms, they are oriented in

opposite directions, as in Figure 5.1. (In other words, bent-faced prisms P and P ′
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are symmetric by a rotation around the core of the band, which interchanges top and

bottom edges.) Thus if the top edge of Fi has dihedral angle αi ± δi−1 ± δi+1, the top

edge of F ′
i has dihedral angle αi ∓ δi−1 ∓ δi+1.

This apparent complication has the fortuitous consequence that the top edges of

Fi and F ′
i , which are glued to the same edge in a product region, have a total dihedral

angle of 2αi (and similarly with the bottom edges).

Theorem 5.14. Let P be a bent-faced prism, with angles labeled as above. Then P

is an angled polyhedron if and only if

(1) (αi − δi) + (αj − δj) < π for all i 6= j,

(2)
∑k

i=1 αi > π,

(3) (αi − δi) + (αi+1 − δi+1) > 0,

(4) |δi−1 − δi+1| < αi < π − |δi−1 − δi+1|, and

(5) δi−1 + δi+1 < αi < π − (δi−1 + δi+1) for those i where the diagonals of Fi−1 and

Fi+1 have opposite slopes.

Note that when P corresponds to an alternating node in the expanded tree E

(see Definition 4.20), all diagonals of P have the same slope, and condition (5) is

unnecessary.

Proof. For the “if” direction, let us first check that all the dihedral angles of P are

in the range (0, π). The top and bottom edges of P have dihedral angles of the form

αi±δi−1±δi+1. If the diagonals of Fi−1 and Fi+1 have the same slope, the signs of δi−1

and δi+1 offset each other, and condition (4) suffices to place the angles in the right

range. If the diagonals of Fi−1 and Fi+1 have opposite slopes, condition (5) suffices.

For lateral edges, the dihedral angle π − αi − αi+1 + δi + δi+1 is positive by condition

(1) and less than π by condition (3). The only remaining edges are the new diagonals,

whose angles are in the right range because we have chosen δi ∈ [0, π/2). (If δi = 0, Fi

will be a totally geodesic quadrilateral, whose diagonal is only a bookkeeping device.)

In bending lateral faces along diagonals, we have preserved the property that

external angles around each vertex of P sum to 2π. Thus it remains to check that
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(∗) for any normal curve γ ⊂ ∂P that does not encircle a single vertex,
∑

γ ǫi > 2π.

The proof of this statement is identical to the argument in Lemma 5.12. In Case 0,

the exterior angle sum of a belt curve γ is still
∑k

i=1 2αi. In Case 1, we can still tighten

γ, reducing its angle sum at each step, until it encircles a single vertex. In Case 2,

we can once again cut γ into arcs γ1, . . . , γm. The same tightening argument shows

that the angle sum of γ1 is at least 2π +2δi − 2αi (the minimum value being attained

when γ1 only passes through Fi) and the angle sum of γ2 is at least 2π + 2δj − 2αj ,

for some j 6= i. Thus

∑

γ

ǫi ≥ 4π + (2δi − 2αi) + (2δj − 2αj) > 2π,

by condition (1), and P is an angled polyhedron.

For the “only if” direction, observe from the beginning of the proof that conditions

(3)−(5) are necessary to make the edges of P have dihedral angles in the range (0, π).

Meanwhile, conditions (1) and (2) are necessary for the same reasons as in Lemma

5.12, illustrated by the normal curves in Figure 5.11.



82 CHAPTER 5. ARBORESCENT LINK COMPLEMENTS



Chapter 6

Angle Structures for Arborescent

Links

In the previous chapter, we have constructed an ideal polyhedral decomposition for an

arborescent link K, consisting of tetrahedra and prisms. In this chapter, we will show

how to assign convex angles to the ideal polyhedra. The construction will succeed

whenever the arborescent diagram DT (K) is balanced, i.e. so long as neighboring

rational tangles have enough crossings between them. (See Definition 4.17 for the

precise statement.) This will prove that all balanced arborescent links are hyperbolic.

The proof proceeds as follows. In Section 6.1, we study the cusp triangulation

in the product regions of a link complement. Using the cusp combinatorics, we can

parametrize the angle structures of each product region in terms of pleating angles

assigned to edges of E. In Section 6.2, we investigate how the angles on product

regions interact with clasps and prisms, setting up a system of local gluing equations

sufficient for an angle structure on the entire link complement. Finally, in Section 6.3

we find angles that satisfy the gluing equations, giving us an angle structure.

83
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6.1 Cusp combinatorics of the product regions

Our exposition in this section borrows heavily from François Guéritaud’s description

of punctured torus bundles [11].

Let B ⊂ E be a branch of an expanded tree, with vertices labeled by letters L±1

or R±1 of a word Ω. In the layered triangulation of the corresponding product region,

each layer ∆i consists of two tetrahedra, Ti and T ′
i , as in Figure 5.5. It is clear from

the figure that each tetrahedron has exactly one ideal vertex at each puncture of S,

i.e. at each strand of the 4-string braid. Since the combinatorics of the four strands

is identical, let us focus on a single puncture of the 4-punctured sphere.

The tetrahedron layer ∆i intersects the neighborhood of a puncture in two bound-

ary triangles, one from a truncated vertex of Ti and one from T ′
i . These boundary

triangles meet at two vertices that come from shared edges of Ti and T ′
i . (This

completes a loop, corresponding to the meridian of a component of K.) Following

Guéritaud, let us call the non-shared vertices the apices of the two boundary trian-

gles. The two triangles are aligned so that one apex points up and the other one

points down (where, as before, we identify up as the direction of increasing indices).

The top and bottom pleated surfaces that form the boundary of ∆i can be seen

in Figure 6.1 as zigzag lines of three segments each. Since the layers of tetrahedra are

stacked along these pleated surfaces, we must stack the pairs of boundary triangles

in a way that respects the combinatorics of the braid.

In the resulting cusp triangulation, each vertex comes from an edge shared by a

AA

AA

B

B

µ

Figure 6.1: The truncated vertices of a layer of two tetrahedra intersect a puncture
in two conjoined boundary triangles, pointing in different directions.
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Figure 6.2: Three views: a branch B ⊂ E labeled with the word Ω = R3L2R; the
corresponding braid of K; and the cusp triangulation of the braid exterior.

few consecutive layers of tetrahedra. The slope of this edge appears on the Farey

graph as a vertex shared by several consecutive triangles τi, . . . , τi+k, corresponding

to a subword of Ω of the form RL∗R or LR∗L, where ∗ ≥ 0. Each Farey triangle

labeled with one of the letters of this subword contributes a different pleated surface,

whose zigzag intersection with the cusp visits the given vertex.

The resulting cusp triangulation, corresponding to the word Ω = R3L2R, is shown

in Figure 6.2. To emphasize the layered structure of the triangulation, the cusp

triangles are shown “opened up,” separating neighboring pleated surfaces.

Definition 6.1. Recall, from Table 5.9, that we think of layers of tetrahedra as

positioned between consecutive letters of Ω. If the letters Ωi, and Ωi+1 on either side

of ∆i are different, we say that i is a hinge index and the tetrahedra of ∆i are hinge

tetrahedra. In Figure 6.2, the hinge layers are shaded.

Between consecutive hinge layers in a cusp triangulation, a series of triangles

shares a single vertex (and the corresponding layers of tetrahedra share an edge of

the same slope). We say that these boundary triangles form a fan. Each fan in the

cusp triangulation corresponds to a twist region in the braid, where the shared edge

is isotopic to a vertical arc at each crossing. Each fan also corresponds to a vertex of
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zi

zi+1

τi+1

Figure 6.3: Pleating angles, seen on the cusp (left) and in the Farey graph (right).

the original weighted tree T .

Definition 6.2. We label the internal angles of boundary triangles as follows. The

apex of each triangle in the ith layer is labeled zi; continuing clockwise from the

apex, the other two angles are xi and yi. (The subscripts are omitted in Figure 6.2.)

Following Example 2.5, note that these angles give dihedral angles of tetrahedra Ti

and T ′
i as long as they are non-negative and xi +yi+zi = π. Note as well that we have

chosen to make the two tetrahedra isometric; in the future, we will not distinguish

between them.

We will parametrize the dihedral angles of tetrahedra in terms of pleating angles

assigned to edges of E.

Definition 6.3. Let e0, . . . , ec be the edges of a branch B. To each ei, we assign a

pleating angle wi ∈ [0, π/2]. By Table 5.9, we can identify ei with the corresponding

Farey edge. Then in the triangle τi ⊂ F , we label the vertex opposite ei by 2wi; in

the triangle τi+1 ⊂ F , we label the vertex opposite ei by −2wi. This gives each of the

Farey triangles τ1, . . . τc two vertex angles. The third vertex of τi, shared by ei and

ei+1, is labeled 2wi − 2wi+1. (See Figure 6.3.)

The parameters wi are called pleating angles because a consecutive pair wi, wi+1

defines the (oriented) external angles of the pleated surface Si+1. The slope of each

edge of Si+1 is given by one of the vertices of τi+1, and the external angle at that edge

is given by the corresponding vertex label. (We have picked signs so that a pleating

angle is positive if a surface is convex toward the inside, i.e. toward higher indices,
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and negative otherwise.) Note that the three vertex labels of τi+1 add up to 0, and

thus a meridian around a puncture of Si+1 has angle holonomy 0.

For 1 ≤ i ≤ c− 1, the edge ei corresponds to a tetrahedron layer ∆i. By locating

the pleated surface on either side of ∆i in Figure 6.2, we can see that the tetrahedron

angle zi has to equal π − 2wi. In fact, Guéritaud has made the clever observation

that all the angles of tetrahedron layer ∆i can be computed from pleating angles, via

the following table.

Ωi, Ωi+1 L L R R L R R L
xi wi−1 + wi+1 2wi − wi−1 − wi+1 wi + wi−1 − wi+1 wi − wi−1 + wi+1

yi 2wi − wi−1 − wi+1 wi−1 + wi+1 wi − wi−1 + wi+1 wi + wi−1 − wi+1

zi π − 2wi π − 2wi π − 2wi π − 2wi

Table 6.4: Pleating angles determine the dihedral angles of ∆i.

Definition 6.4. For 1 ≤ i ≤ c − 1, i.e. for all indices corresponding to tetrahedra,

we will require that the pleating angles satisfy the following conditions:

(Range) 0 < wi < π/2.

(Concavity) If i is not a hinge index, 2wi > wi−1 + wi+1.

(Hinge) If i is a hinge index, wi > |wi+1 − wi−1|.

See Figure 6.9 for a graphical interpretation of these conditions.

Lemma 6.5 (Guéritaud). Suppose that the pleating angles wi satisfy the range, con-

cavity, and hinge conditions, and set the tetrahedron angles as in Table 6.4. Then

(1) for each ∆i, the angles xi, yi, zi are positive and add up to π, and

(2) the dihedral angles around any edge interior to the product region add up to 2π.

Proof. Conclusion (1) is evident from Table 6.4. Conclusion (2) also follows by a

quick computation from the table, keeping track of the change in pleating angle as

we “scan” each vertex on the cusp by pleated surfaces.
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6.2 The pleated boundary of product regions

The choice of pleating angles in a product region is somewhat constrained by the

geometry of the boundary spheres S0 and Sc.

Lemma 6.6. Let B ⊂ E be a terminal branch of length c, with edges labeled by

pleating angles w0, . . . , wc−1. These labels wi give an angled triangulation for the

rational tangle corresponding to B, so long as

(1) w1, . . . , wc−2 satisfy the range, concavity, and hinge conditions, and

(2) wc−1 = π
2
.

∆c−2

∆c−2

∆c−2

∆c−2

∆c−3

∆c−3

x

x

y

y

z

z

2wc−1 = π

−2wc−2

Scl

Scl

Figure 6.5: Cusp view: folding pleated surface Scl requires a pleating angle wc−1 = π
2
.

Proof. Recall from Section 5.2 that the layered triangulation of a rational tangle

consists of a product region exactly as above, ending at the pleated surface Scl = Sc−1

that corresponds to Farey triangle τc−1. Thus Lemma 6.5 takes care of the tetrahedron

angles inside the product region.

On the cusp torus, the folding pattern of Scl brings together the layered triangu-

lations of two different strands of K. We can see the surface Scl making a hairpin

turn at the peripheral edges, as in Figure 6.5. By Definitions 5.8 and 6.3, the pleating

angle at the peripheral edges is labeled 2wc−1, and the hairpin turn along those edges
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Figure 6.6: Gluing a product region to a pair of prisms when the edge e0 is exceptional.
Left: sphere S0 as seen in the link diagram. Right: the cusp combinatorics.

requires an external angle of π. Thus setting wc−1 = π/2 allows us to construct the

clasp in a geometrically consistent fashion.

When a branch B connects to a node v ∈ E, and thus the product region connects

to a pair of prisms P and P ′, the pleating angles on the boundary of the product

region determine the dihedral angles along matching faces Fi ⊂ P and F ′
i ⊂ P ′. This

can happen in one of two ways, depending on whether the edge e0 of B adjacent to

v is exceptional (see Definition 4.21).

Lemma 6.7. Let S0 be a 4-punctured sphere bounding the product region of B, which

is glued to faces Fi ∪ F ′
i in the pair of prisms. Let the dihedral angles on Fi and F ′

i

be labeled as in Section 5.3. Then the pleating angles on S0 determine these dihedral

angles as follows:

(1) If e0 is exceptional, αi = π
2

+ w1 and δi = w0.

(2) If e0 is not exceptional, αi = π
2

+ w0 − w1 and δi = w0.

Proof. Let v1 be the first vertex of B, across e0 from v. If e0 is exceptional, the

crossing corresponding to v1 is on a band parallel to the band of v. In this case, the

edge of S0 isotopic to a vertical arc at the crossing is glued to a lateral edge of Fi∪F ′
i .

(See Figure 6.6.) Thus the top and bottom edges of Fi ∪F ′
i are glued to the edges of

S0 that are not shared with S1, i.e., the edges whose slope is opposite e1 in the Farey

graph. By Definition 6.3, the pleating angle on those edges is 2w1, and by Remark
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Figure 6.7: Gluing a product region to a pair of prisms when the edge e0 is not excep-
tional. Left: sphere S0 as seen in the link diagram. Right: the cusp combinatorics.

5.13, the total internal angle of Fi ∪ F ′
i at those edges is 2αi. Thus we can compute

that 2αi = π + 2w1.

If e0 is not exceptional, the crossing corresponding to v1 is on a band perpendicular

to the band of v. In this case, the vertical edge at the crossing and its twin of the

same slope are glued to the top or bottom edges of Fi and F ′
i . (See Figure 6.7.) In

the cusp picture, we can see the crossing edge as a vertex of the first fan of Ω; thus

the pleating angle of S0 at this edge (and its twin of the same slope) is 2w0 − 2w1.

The signs work out so that 2w0 − 2w1 is negative when 2αi < π. We can therefore

compute that 2αi = π + 2w0 − 2w1.

In either case, the diagonals of Fi ∪ F ′
i are glued to edges of S0 whose pleating

angle is −2w0. Thus π − 2δi = π − 2w0, and δi = w0.

Remark 6.8. Lemma 6.7 describes the dihedral angles of the prisms glued to bound-

ary sphere S0 of a product region. If the other boundary sphere Sc is also glued to

a pair of prisms, the dihedral angles of those prisms will of course have the same

description, with e0 replaced by ec, v1 by vc, w0 by wc, and w1 by wc−1.

We have now described the interaction between the dihedral angles at all 4-

punctured spheres connecting pieces of the link complement, with one exception:

places where a prism pair P ∪P ′ is glued directly to another prism pair Q∪Q′ rather

than to a product region. In the expanded tree E, this corresponds to two nodes

separated by a single edge, without a branch in between.
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Figure 6.8: Gluing prisms P ∪P ′ directly to prisms Q∪Q′. Left to right: the bands of
v1 and v2; the gluing by a 90◦ twist; the cusp combinatorics showing dihedral angles.

Lemma 6.9. Let P and P ′ be prisms corresponding to a node v1 ∈ E, and Q and Q′

be prisms corresponding to an adjacent node v2. Then

(1) the lateral faces Fi ∪ F ′
i of P ∪ P ′ are glued to lateral faces Gj ∪ G′

j of Q ∪ Q′

by a 90◦ twist,

(2) these faces not bent along diagonals (δi = δj = 0), and

(3) the total internal angle at the top and bottom edges of Fi and F ′
i matches the

total internal angle at the top and bottom edges of Gj and G′
j (i.e., αi = αj).

Proof. In converting a weighted tree T into an expanded tree E, we have expanded

the branches of T , but did not touch the edges that connect two nodes. Thus v1

and v2 must have come from adjacent nodes of T , which have perpendicular bands.

Suppose without loss of generality that the band of v1 is horizontal, as in Figure 5.10.

Then the top and bottom edges of faces Fi ∪F ′
i of P ∪P ′, which are horizontal in the

projection diagram, are glued to edges that span the band of v2, i.e. to lateral edges

of Gj ∪ G′
j. Thus the prisms are glued by a 90◦ twist, as in Figure 6.8.

If the faces Fi ∪ F ′
i are bent along diagonals, P and P ′ must be convex at those

diagonals, implying that Q and Q′ are concave. Thus the only way to keep all four

prisms convex if δi = δj = 0. As a result, the 4-punctured sphere S along which

we perform the gluing is only bent along vertical and horizontal edges. As with 4-

punctured spheres in a product region, the signed pleating angles on S must sum to
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0. Since those pleating angles are equal to 2αi −π at the top/bottom edges of Fi∪F ′
i

and π − 2αj at the top/bottom edges of Gj ∪ G′
j , it follows that αi = αj.

Remark 6.10. Since αi = αj , we can define both angles via a pleating angle assigned

to the edge e connecting v1 to v2.

We can combine the results of this section into the following statement.

Theorem 6.11. Let K be an arborescent link represented by an expanded tree E. To

each edge e ⊂ E, we assign a pleating angle w(e) ∈ [0, π/2]. These pleating angles

determine dihedral angles of the tetrahedra and prisms of S3 \ K as follows:

• For a tetrahedron layer ∆(e) corresponding to an interior edge of a branch, the

dihedral angles are defined via Table 6.4.

• For a prism pair corresponding to a node v ∈ E, let e1
0, . . . e

k
0 be the edges

adjacent to v. If ei
0 is part of a branch Bi, let ei

1 be the next edge of the branch.

Now,

- if ei
0 is part of a branch and not exceptional, αi = π

2
+wi

0−wi
1 and δi = wi

0,

- if ei
0 is part of a branch and is exceptional, αi = π

2
+ wi

1 and δi = wi
0, and

- if ei
0 connects to another node, αi = π

2
− wi

0 and δi = 0.

This assignment of angles gives the polyhedra of S3 \K an angle structure as long as

(1) every terminal edge of E is labeled π
2
,

(2) if e is an interior edge of a branch, the pleating angle w(e) satisfies the range,

concavity, and hinge conditions of Definition 6.4, and

(3) the angles of each prism satisfy the conditions of Theorem 5.14.

Proof. See Lemmas 6.5, 6.6, 6.7, and 6.9, and Theorem 5.14.
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6.3 Existence of angle structures

The goal of this section is to assign a pleating angle to each edge of E in a way that

satisfies the conditions of Theorem 6.11, completing the proof of Theorem 1.18.

We start with the branches of E. For each branch, we will think of pleating angles

via a graph in the plane, as in Figure 6.9. More concretely, we think of pleating angle

wi as lying at the point (i, wi).

Lemma 6.12. Let B ⊂ E be a terminal branch of length c ≥ 3, with edges labeled by

pleating angles w0, . . . , wc−1. Chose values of w0, w1 ∈ (0, π
2
) such that

m :=
π/2 − w1

c − 2
< min(w0, w1 − w0).

Given any such choice, there exist pleating angles w2, . . . , wc−2 that give the ratio-

nal tangle of B an angle structure.

Following Remark 5.9, we note that if B is short (i.e., c = 2), the rational tangle

of B contains no tetrahedra at all.

Proof. The proof is a construction in coordinate geometry. We construct a line ℓ

connecting points (1, w1) and (c − 1, π
2
); the value m defined in the statement of the

RRRRR LLLLLL
0

w0

w1

wc−1 = π
2

π
2

line ℓ (slop
e m)

Figure 6.9: In finding pleating angles for a terminal branch, we place hinge indices
on the line ℓ and connect them by segments of parabolas. When the parabolas are
sufficiently close to ℓ, all the conditions are satisfied.
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lemma is the slope of ℓ. For every hinge index i ∈ [2, c−2], we will place the pleating

angle wi at the point of ℓ whose x-coordinate is i. We will then connect the pleating

angles of hinge indices by segments of parabolas that lie above ℓ but below π
2
. See

Figure 6.9.

This construction defines an angle wi ∈ (0, π
2
) for i = 2, . . . , c− 2. Thus the range

condition is satisfied automatically. Because the non-hinge indices lie on concave-

down parabolas, the concavity condition is also satisfied. (If 1 is not a hinge index,

we need to ensure that the first parabolic segment lies close enough to ℓ to satisfy the

concavity condition at w1, but this can always be done because m < w1 −w0.) Thus

it remains to check the hinge condition.

Because the line ℓ has a positive slope, w0 < w1 < wi for all i > 1. In particular, if

1 is a hinge index, the hinge condition at i = 1 can be rearranged to read w0 > w2−w1.

But w0 > m by hypothesis, and we can make the difference w2 − w1 arbitrarily close

to m. For any other hinge index i, bringing the adjacent parabolas closer to ℓ will

bring the difference |wi+1 − wi−1| arbitrarily close to 2m. But

2m = m + m < w0 + (w1 − w0) = w1 < wi

for all i > 1. Thus the hinge condition is satisfied, and the rational tangle has an

angle structure by Lemma 6.6.

Remark 6.13. In the special case when E has no nodes (and thus K is a two-

bridge link), an argument just like the one in Lemma 6.12 guarantees the existence

of angle structures. In this scenario, w1 = wc−1 = π
2
. If we place all hinge indices

on a horizontal line at height π
4

and connect them by pieces of parabolas lying above

the line, the hinge and concavity conditions are satisfied immediately. This gives a

quick proof that all two-bridge links whose word Ω has both letters R and L (i.e. all

two-bridge links with at least two twist regions) are hyperbolic.

For interior branches, there is a statement of similar generality to Lemma 6.12.

However, we will only need a simpler statement.
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Lemma 6.14. Let B ⊂ E be an interior branch of length c, with edges labeled by

pleating angles w0, . . . , wc. Chose a value of w0 = wc ∈ (0, π
2
). If c ≥ 2, also choose

a value of w1 = wc−1 ∈ (w0,
π
2
). Given any such choice, there exist pleating angles

w2, . . . , wc−2 that give the product region of B an angle structure.

Proof. If c = 1, the product region contains no tetrahedra by Remark 5.7, and thus

there is nothing to prove. If c = 2 or c = 3, both the hinge and concavity conditions

are satisfied because w1 and wc−1 are equal, and both are greater than w0 and wc.

Thus, we can assume that c ≥ 4.

If c ≥ 4, we construct a horizontal line ℓ from (1, w1) to (c − 1, wc−1). As in

the last lemma, we place all hinge indices on this line and connect them by pieces of

parabolas that lie above the line. Thus the hinge and concavity conditions, as needed,

are immediately satisfied for all i ∈ [2, c − 2]. For i = 1 or i = c − 1, we can satisfy

the hinge and/or concavity conditions by ensuring that the first and last parabolas

lie sufficiently close to ℓ.

Now, assume that the expanded tree E is balanced ; i.e., E represents a balanced

diagram. Recall from Definition 4.17 that this is a condition on neighboring terminal

branches that meet at a node of E. For alternating nodes, the definition says that

two short branches (i.e., two terminal branches of length 2) cannot be adjacent. For

non-alternating nodes, each triple of neighboring edges at v must satisfy the condition

1

ci−1
+

1

ci

+
1

ci+1
< 1,

where for terminal branches ci = ℓ(Bi) is the length of the branch, or ci = ∞

otherwise.

Remark 6.15. An easy but useful observation is that for positive integers c1, c2,

1

c1
+

1

c2
< 1 implies

1

c1
+

1

c2
≤

5

6
.
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We are now ready to assign pleating angles to the edges of a balanced tree E. We

pick a value of ε > 0, indeterminate for now, and proceed as follows.

(1) Every terminal edge e ⊂ E is labeled π
2
.

(2) Every edge e ⊂ E connecting two nodes is labeled π
12

− 3ε.

(3) Let B ⊂ E be an interior branch of length c. We label w0 = w1 = π
18

+ ε. If

c ≥ 2, we label w1 = wc−1 = π
9
+ε. If c ≥ 4, by Lemma 6.14 there exist pleating

angles w2, . . . , wc−2 that give the product region of B an angle structure.

(4) Let v ∈ E be an alternating node adjacent to edges e1
0, . . . e

k
0. Some of these

edges may have already been labeled because they connect to another node or

are part of an interior branch; all remaining edges adjacent to v are part of

terminal branches. If Bi is a short terminal branch, we give ei
0 the pleating

angle wi
0 = π

4
+ 2ε. If Bi is a terminal branch of length ci ≥ 3, we give ei

0

the pleating angle wi
0 = π

4
+ ε and give the next edge ei

1 the pleating angle

wi
1 = 3π

8
+ ε. We can then compute that

mi =
π
2
− wi

1

ci − 2
=

π
8
− ε

ci − 2
≤

π

8
− ε < min(wi

0, wi
1 − wi

0) ,

satisfying the condition of Lemma 6.12. Thus there are choices for the remaining

pleating angles of the branch that give the rational tangle an angle structure.

(5) Let v ∈ E be a non-alternating node adjacent to edges e1
0, . . . e

k
0. For each

terminal branch Bi of length ci, we give ei
0 the pleating angle wi

0 = π
2ci

+ ε. If

ci ≥ 3, we give the next edge ei
1 the pleating angle wi

1 = π
ci

+ ε. We can then

compute that

mi =
π
2
− wi

1

ci − 2
=

π
2
− π

ci

− ε

ci − 2
<

π

2
·
1 − 2

ci

ci − 2
=

π

2ci

,

satisfying the condition of Lemma 6.12. Thus there are choices for the remaining

pleating angles of the branch that give the rational tangle an angle structure.
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Theorem 6.16. Let E be a balanced expanded tree representing an arborescent link

K, and let the edges of E be labeled with pleating angles as above. Then there is a

value of ε > 0 such that these edge labels give the polyhedral decomposition of S3 \ K

an angle structure.

Proof. By Theorem 6.11, the pleating angles assigned to edges of E define dihedral

angles for all the polyhedra and prisms. Furthermore, we have already checked that

the pleating angles of the branches of E give angle structures for the corresponding

product regions and rational tangles. Thus it remains to show that the dihedral angles

of each prism satisfy the definition of an angled polyhedron. We will consider two

cases, depending on the node v ∈ E associated to the prism P .

Case 1: v is an alternating node (which may or may not be exceptional). Let e1
0, . . . e

k
0

be the edges adjacent to v. By Theorem 6.11, the above choices of pleating angles

give the following dihedral angles on the prism.

• Exceptional edges. We adopt the convention that, if v is an exceptional node,

the exceptional edge is e1
0.

- If e1
0 is part of an interior branch of length c1, δ1 = π

18
+ ε. If c1 = 2,

α1 = 5π
9

+ ε; otherwise, α1 = 11π
18

+ ε.

- If e1
0 is part of a terminal branch, δ1 = π

4
+ ε and α1 = 7π

8
+ ε. (This

occurs when K is a Montesinos link. Because we have added crossings to

a rational tangle that began with at least two crossings, c1 ≥ 3.)

• Non-exceptional edges:

- If ei
0 is part of an interior branch of length ci, δi = π

18
+ε. If ci = 2, αi = 4π

9
;

otherwise, αi = π
2
.

- If ei
0 is part of a terminal branch of length ci = 2, δi = αi = π

4
+ 2ε.

If ci ≥ 3, δi = π
4

+ ε and αi = π
4

+ ε.

- If ei
0 connects to another node, δi = 0 and αi = 5π

12
+ 3ε.
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To prove that P is an angled polyhedron, we check the conditions of Theorem 5.14.

(1) (αi − δi) + (αj − δj) < π for all i 6= j. We may restrict our attention to the case

when v is exceptional, because otherwise αi − δi < π
2

for all i.

If the exceptional edge e1
0 is part of an interior branch, the value of αj − δj is

largest for j = 1, where α1 − δ1 ≤ 5π
9

. Meanwhile, for i 6= 1, αi − δi < 4π
9

in all

cases (if ei
0 connects to another node, we need to make ε sufficiently small).

If the exceptional edge e1
0 is part of a terminal branch, the value of αj − δj is

also largest for j = 1, where α1 − δ1 = 5π
8

. In this case, K is a Montesinos link,

and all edges at v belong to terminal branches. Thus, for all i 6= 1, αi − δi < π
8
,

and the condition is satisfied.

(2)
∑k

i=1 αi > π. Observe that αi ≥
3π
8

for all i, except when ei
0 is part of a short

terminal branch. Thus, if none of the terminal branches at v is short, we are

done because k ≥ 3. On the other hand, if ei
0 is part of a short branch, we note

that E is balanced and thus two short branches cannot be adjacent. In this

case, αi = π
4

+ 2ε while αi±1 ≥
3π
8

, and the sum adds up to more than π.

(3) (αi − δi) + (αi+1 − δi+1) > 0. Observe that αi ≥
π
4

+ 2ε for all i, with equality

if and only if ei
0 is part of a short terminal branch. Similarly, δj ≤

π
4

+ 2ε, with

equality if and only if ej
0 is part of a short terminal branch. When j = i ± 1,

at least one of the two inequalities must be strict, because E is balanced. Thus

αi > δi+1 and αi+1 > δi.

(4) |δi−1 − δi+1| < αi < π − |δi−1 − δi+1|. The first inequality follows because, as

we have just argued, αi > δj for j = i± 1. Now, consider the second inequality.

If K is a Montesinos link, every edge at v is part of a terminal branch; thus

αi ≤ 7π
8

+ ε while |δi−1 − δi+1| ≤ ε, for all i. If K is not a Montesinos link,

αi ≤
2π
3

and δj ≤
π
4

+ ε, for all i and j, giving the inequality.

(5) Condition (5) does not apply, because v is alternating.
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Case 2: v is not an alternating node. By Theorem 4.22, this means that v is not

exceptional. Let e1
0, . . . e

k
0 be the edges adjacent to v; if ei

0 is part of a branch Bi,

let ei
1 be the next edge of the branch. Then the above choices of pleating angles give

the following dihedral angles on the prism:

- If ei
0 is part of an interior branch of length ci, δi = π

18
+ ε. If ci = 2, αi = 4π

9
;

otherwise, αi = π
2
.

- If ei
0 is part of a terminal branch of length ci, δi = π

2ci

+ ε. If ci = 2, αi = π
4

+ ε;

otherwise, αi = π
2
− π

2ci

.

- If ei
0 connects to another node, δi = 0 and αi = 5π

12
+ 3ε.

To prove that P is an angled polyhedron, we check the conditions of Theorem 5.14.

(1) (αi−δi)+(αj−δj) < π for all i 6= j. Since αi−δi < π
2

for all i, this is immediate.

(2)
∑k

i=1 αi > π. We use the fact that k ≥ 3. If ei
0 is part of a terminal branch for

i = 1, 2, 3, then
3∑

i=1

αi ≥
3π

2
−

π

2

3∑

i=1

1

ci

> π,

because E is balanced. If two of these edges, say, e1
0 and e2

0, are part of terminal

branches,

α1 + α2 ≥ π −
π

2c1

−
π

2c2

≥
7π

12
,

because E is balanced and 1
c1

+ 1
c2

≤ 5
6
. But then α3 contributes at least 5π

12
+3ε,

bringing the total above π. Finally, if at most one of the edges ei
0 is part of a

terminal branch, αi > π
4
, while the other two edges contribute at least 5π

12
each.

(3) (αi−δi)+(αi+1−δi+1) > 0. Condition (5) implies that αi > δi+1 and αi+1 > δi.

(4) |δi−1 − δi+1| < αi < π − |δi−1 − δi+1|. Again, condition (5) is strictly stronger.

(5) δi−1 + δi+1 < αi < π − (δi−1 + δi+1). The second inequality is never a problem:

αi ≤ π
2

for all i, while the sum δi−1 + δi+1 can only add up to π
2

when both

indices correspond to short terminal branches. But we can rule out this situation

because E is balanced.
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Similarly, the first inequality is satisfied when ei
0 is not part of a terminal branch.

In this situation, αi ≥
5π
12

+ 3ε, while δi−1 + δi+1 ≤
5π
12

+ 2ε.

If ei
0 is part of a terminal branch, αi ≥

π
2
− π

2ci

. If ei−1
0 and ei+1

0 also belong to

terminal branches,

αi − δi−1 − δi+1 ≥
π

2
−

π

2

i+1∑

j=i−1

1

cj

− 2ε > 0 for small ε,

because E is balanced. If ei−1
0 is part of a terminal branch but ei+1

0 is not,

αi − δi−1 − δi+1 ≥
π

2
−

π

2

(
1

ci−1
+

1

ci

)
− 2ε −

π

18
> 0,

because 1
ci−1

+ 1
ci+1

≤ 5
6

and δi+1 ≤ π
18

+ ε. Finally, if neither ei−1
0 nor ei+1

0 is

part of a terminal branch, observe that αi > π
4

and δi−1 + δi+1 ≤
π
9

+ 2ε.

This completes the proof of Theorem 6.16, and thus also of Theorem 1.18.
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