Review Questions for Midterm 1

Math 320, Fall 2006

- 1. You should know the definitions of the following terms. 4 of them will appear on the test.
 - upper bound, lower bound
 - inf, sup
 - 1–1, onto functions
 - countable, uncountable
 - convergence, divergence (for sequences)
 - bounded sequence
 - monotonic sequence
 - Cauchy sequence
 - subsequence
 - convergence, divergence (for series)
 - absolutely convergent series
- 2. Are the following true or false?
 - If $\sup A < \sup B$, then some element of B is an upper bound for A.
 - If $\sup A \leq \inf B$, and A does not have a maximum, then a < b for all $a \in A$ and $b \in B$.
 - Every subset of a countable set is countable.
 - Every subset of an uncountable set is uncountable.
 - If the sequences (a_n) and (b_n) converge, then $(a_n b_n)$ converges.
 - If the sequences (a_n) and (b_n) diverge, then (a_nb_n) diverges.
 - Every bounded, monotonic sequence is Cauchy.
 - There is a sequence (a_n) , such that every $q \in \mathbb{Q}$ is the limit of a subsequence of (a_n) .
 - If $(a_n) \to \ell$, and (b_n) is a rearrangement of (a_n) , then $(b_n) \to \ell$.
 - If $\sum a_n$ converges, and (b_n) is a bounded sequence, then $\sum a_n b_n$ converges.
- **3.** Cardinality questions:
 - Prove that the set of odd natural numbers is countable.
 - Prove that the union of two disjoint, countable sets is countable.
 - Prove that the intervals (0, 1) and (1,∞) have the same cardinality as ℝ. *Hint: can you construct 1–1, onto functions among these three sets?*

4. Prove that $\inf \{2 + \frac{1}{n} : n \in \mathbb{N}\} = 2$. What theorems do you need for this proof?

5. Prove, in two essentially different ways, that $\mathbb{Q} \neq \mathbb{R}$. How many different ways can you prove this?

6. Consider the sequence (a_n) , defined by $a_n = \frac{2n-1}{5n+2}$.

- Use your intuition to decide what $\lim (a_n)$ should be.
- Use the *definition* of convergence to prove that the limit exists, and is equal to your answer.
- Use the algebraic limit theorem, and the fact that $\frac{1}{n} \to 0$, to prove that the limit exists and to compute it.

7. Prove that every convergent sequence is bounded. This is a theorem in the book, but you should know how to prove this without quoting the theorem.

8. Prove that every convergent sequence has a monotonic subsequence.

9. Prove that
$$\sum_{n=1}^{\infty} \left(\frac{-1}{2}\right)^n$$
 converges. There are at least three ways to do this!