Review Questions for Midterm 1

Math 320, Fall 2006

1. You should know the definitions of the following terms. 4 of them will appear on the test.

- upper bound, lower bound
- inf, sup
- 1-1, onto functions
- countable, uncountable
- convergence, divergence (for sequences)
- bounded sequence
- monotonic sequence
- Cauchy sequence
- subsequence
- convergence, divergence (for series)
- absolutely convergent series

2. Are the following true or false?
(T) If $\sup A<\sup B$, then some element of B is an upper bound for A.
(T) If $\sup A \leq \inf B$, and A does not have a maximum, then $a<b$ for all $a \in A$ and $b \in B$.
(F) Every subset of a countable set is countable.
(F) Every subset of an uncountable set is uncountable.
(T) If the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge, then $\left(a_{n} b_{n}\right)$ converges.
(F) If the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ diverge, then $\left(a_{n} b_{n}\right)$ diverges.
(T) Every bounded, monotonic sequence is Cauchy.
(T) There is a sequence $\left(a_{n}\right)$, such that every $q \in \mathbb{Q}$ is the limit of a subsequence of $\left(a_{n}\right)$.
(T) If $\left(a_{n}\right) \rightarrow \ell$, and $\left(b_{n}\right)$ is a rearrangement of $\left(a_{n}\right)$, then $\left(b_{n}\right) \rightarrow \ell$.
(F) If $\sum a_{n}$ converges, and $\left(b_{n}\right)$ is a bounded sequence, then $\sum a_{n} b_{n}$ converges.
3. Cardinality questions:

- Prove that the set of odd natural numbers is countable.
- Prove that the union of two disjoint, countable sets is countable.
- Prove that the intervals $(0,1)$ and $(1, \infty)$ have the same cardinality as \mathbb{R}. Hint: can you construct 1-1, onto functions among these three sets?

4. Prove that $\inf \left\{2+\frac{1}{n}: n \in \mathbb{N}\right\}=2$. What theorems do you need for this proof?
5. Prove, in two essentially different ways, that $\mathbb{Q} \neq \mathbb{R}$. How many different ways can you prove this?
6. Consider the sequence $\left(a_{n}\right)$, defined by $a_{n}=\frac{2 n-1}{5 n+2}$.

- Use your intuition to decide what $\lim \left(a_{n}\right)$ should be.
- Use the definition of convergence to prove that the limit exists, and is equal to your answer.
- Use the algebraic limit theorem, and the fact that $\frac{1}{n} \rightarrow 0$, to prove that the limit exists and to compute it.

7. Prove that every convergent sequence is bounded. This is a theorem in the book, but you should know how to prove this without quoting the theorem.
8. Prove that every convergent sequence has a monotonic subsequence.
9. Prove that $\sum_{n=1}^{\infty}\left(\frac{-1}{2}\right)^{n}$ converges. There are at least three ways to do this!
