Solutions for the Final Exam Review Questions

Math 320, Fall 2006

1. Are the following true or false? Give a brief explanation or a counterexample.
(T) If $\sup A \leq \inf B$, and A does not have a maximum, then $a<b$ for all $a \in A$ and $b \in B$.
(T$)$ If the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge, then $\left(a_{n} b_{n}\right)$ converges.
(T) Every bounded, monotonic sequence is Cauchy.
(F) If $\sum a_{n}$ converges, and $\left(b_{n}\right)$ is a bounded sequence, then $\sum a_{n} b_{n}$ converges.
(T) An open set cannot contain any isolated points.
(F) If A is a bounded set, then $\sup A$ is a limit point of A.
(F) Every non-empty compact set contains a non-empty open set.
(F) If $f: A \rightarrow \mathbb{R}$ is differentiable, and $f^{\prime}(x)>0$ for all x, then f is 1-to- 1 .
(T) If $f: A \rightarrow \mathbb{R}$ is differentiable, A is connected, and $f^{\prime}(x)>0$ for all x, then f is 1-to-1.
(T) If f_{n} converges to f on an interval A, and each f_{n} is an increasing function, then f is increasing.
(F) If $f_{n} \rightarrow f$ uniformly on an interval A, and each f_{n} is differentiable, then f is differentiable.
2. A Buddhist monk leaves his monastery at 7 am and climbs the neighboring mountain, arriving at the top at 7 pm . After a night of meditation on the mountaintop, he starts descending at 7 am the next day, and arrives at his monastery at 7 pm . Prove that there is a time t, such that at time t the monk was at the same elevation on both days.

Proof: Let $e_{1}(t)$ be the monk's elevation at time t on the first day, and $e_{2}(t)$ be his elevation at time t on the second day. Define a function $f(t)=e_{1}(t)-e_{2}(t)$. Then $f(7 a \mathrm{~m})<0$, because at 7 am the monk was lower on the first day than the second day. Similarly, $f(7 \mathrm{pm})>0$. Thus, by the Intermediate Value Theorem, there must be a time t such that $f(t)=0$. At this time, the monk was at the same elevation on both days.
3. Prove that the function $f(x)=\ln x$ is uniformly continuous on $[1, \infty)$. (Hint: show that $\left|f^{\prime}(x)\right| \leq 1$ on this interval, and use the Mean Value Theorem.) Is $f(x)$ uniformly continuous on $(0, \infty)$?

Proof: Since $f^{\prime}(x)=1 / x$, it follows that $\left|f^{\prime}(x)\right| \leq 1$ on the interval $[1, \infty)$. Now, to prove f is uniformly continuous, let $\epsilon>0$. We can let $\delta=\epsilon$. For all distinct values x and y in $[1, \infty)$, the Mean Value Theorem says there is a c such that

$$
\left|\frac{\ln x-\ln y}{x-y}\right|=\left|\frac{1}{c}\right| \leq 1
$$

Thus, whenever $|x-y|<\delta$, we have

$$
|\ln x-\ln y| \leq|x-y|<\delta=\epsilon
$$

implying that $f(x)=\ln x$ is uniformly continuous on $[1, \infty)$.
Meanwhile, f is not uniformly continuous on $(0, \infty)$, because as $x \rightarrow 0, \ln x \rightarrow-\infty$.
4. Let $g(x)=\sum_{n=1}^{\infty} \frac{\sin \left(2^{n} x\right)}{3^{n}}$.

Prove that the sum converges on \mathbb{R}, and that $g(x)$ is continuous on \mathbb{R}. Is g differentiable? Twice differentiable?

Proof: We will prove that the series for $g(x)$ and $g^{\prime}(x)$ converge uniformly on \mathbb{R}. For each $n \in \mathbb{N}$,

$$
\left|\frac{\sin \left(2^{n} x\right)}{3^{n}}\right| \leq \frac{1}{3^{n}}
$$

and $\sum(1 / 3)^{n}$ is a convergent geometric series. Thus, by the Weierstrass M-Test, the series for $g(x)$ converges uniformly. Since each function in the series is continuous and the convergence is uniform, $g(x)$ is also continuous.

Similarly, taking the derivative of each function in the series, we get

$$
\left|\frac{d}{d x} \frac{\sin \left(2^{n} x\right)}{3^{n}}\right|=\left|\frac{2^{n} \cos \left(2^{n} x\right)}{3^{n}}\right| \leq \frac{2^{n}}{3^{n}}
$$

and $\sum(2 / 3)^{n}$ is a convergent geometric series. Thus the series

$$
\sum_{n=1}^{\infty} \frac{2^{n} \cos \left(2^{n} x\right)}{3^{n}}
$$

converges uniformly to $g^{\prime}(x)$, and g is differentiable on \mathbb{R}. On the other hand, $g^{\prime \prime}(x)$ is not defined for many values of x, because this time the series is only bounded by $\sum(4 / 3)^{n}$.
5. Let $h(x)=\sum_{n=1}^{\infty} n x^{n-1}$.

Prove that this series converges and defines a continuous function on $(-1,1)$. (Hint: what function has $h(x)$ as its derivative?) Make sure that you reference all necessary theorems in your argument.

Proof: Consider the function

$$
f(x)=\sum_{n=0}^{\infty} x^{n}
$$

We have seen in class that this series converges on the interval $(-1,1)$. Thus, by the fundamental theorem of power series (Theorem 6.5.7 in the book), $f(x)$ is differentiable on $(-1,1)$, and its derivative is $f^{\prime}(x)=h(x)$. Furthermore, again by Theorem 6.5.7, $f(x)$ is differentiable infinitely many times on $(-1,1)$. Since $f^{\prime \prime}(x)$ is defined for all $x \in(-1,1), h(x)=f^{\prime}(x)$ is differentiable, and therefore continuous.

