
Solutions for the Final Exam Review Questions

Math 320, Fall 2006

1. Are the following true or false? Give a brief explanation or a counterexample.

(T) If sup A ≤ inf B, and A does not have a maximum, then a < b for all a ∈ A and b ∈ B.

(T) If the sequences (a
n
) and (b

n
) converge, then (a

n
b
n
) converges.

(T) Every bounded, monotonic sequence is Cauchy.

(F) If
∑

a
n

converges, and (b
n
) is a bounded sequence, then

∑

a
n
b
n

converges.

(T) An open set cannot contain any isolated points.

(F) If A is a bounded set, then sup A is a limit point of A.

(F) Every non-empty compact set contains a non-empty open set.

(F) If f : A → R is differentiable, and f ′(x) > 0 for all x, then f is 1-to-1.

(T) If f : A → R is differentiable, A is connected, and f ′(x) > 0 for all x, then f is 1-to-1.

(T) If f
n

converges to f on an interval A, and each f
n

is an increasing function, then f is
increasing.

(F) If f
n
→ f uniformly on an interval A, and each f

n
is differentiable, then f is differentiable.

2. A Buddhist monk leaves his monastery at 7am and climbs the neighboring mountain, arriving
at the top at 7pm. After a night of meditation on the mountaintop, he starts descending at
7am the next day, and arrives at his monastery at 7pm. Prove that there is a time t, such that
at time t the monk was at the same elevation on both days.

Proof: Let e1(t) be the monk’s elevation at time t on the first day, and e2(t) be his elevation
at time t on the second day. Define a function f(t) = e1(t) − e2(t). Then f(7am) < 0, because
at 7am the monk was lower on the first day than the second day. Similarly, f(7pm) > 0. Thus,
by the Intermediate Value Theorem, there must be a time t such that f(t) = 0. At this time,
the monk was at the same elevation on both days.

3. Prove that the function f(x) = ln x is uniformly continuous on [1,∞). (Hint: show that
|f ′(x)| ≤ 1 on this interval, and use the Mean Value Theorem.) Is f(x) uniformly continuous
on (0,∞)?

Proof: Since f ′(x) = 1/x, it follows that |f ′(x)| ≤ 1 on the interval [1,∞). Now, to prove f
is uniformly continuous, let ǫ > 0. We can let δ = ǫ. For all distinct values x and y in [1,∞),
the Mean Value Theorem says there is a c such that

∣

∣

∣

∣

ln x − ln y

x − y

∣

∣

∣

∣

=

∣

∣

∣

∣

1

c

∣

∣

∣

∣

≤ 1.

Thus, whenever |x − y| < δ, we have

| lnx − ln y| ≤ |x − y| < δ = ǫ,

implying that f(x) = ln x is uniformly continuous on [1,∞).
Meanwhile, f is not uniformly continuous on (0,∞), because as x → 0, ln x → −∞.
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4. Let g(x) =
∞

∑

n=1

sin(2nx)

3n

.

Prove that the sum converges on R, and that g(x) is continuous on R. Is g differentiable?
Twice differentiable?

Proof: We will prove that the series for g(x) and g′(x) converge uniformly on R. For each
n ∈ N,

∣

∣

∣

∣

sin(2nx)

3n

∣

∣

∣

∣

≤
1

3n

,

and
∑

(1/3)n is a convergent geometric series. Thus, by the Weierstrass M–Test, the series for
g(x) converges uniformly. Since each function in the series is continuous and the convergence
is uniform, g(x) is also continuous.

Similarly, taking the derivative of each function in the series, we get
∣

∣

∣

∣

d

dx

sin(2nx)

3n

∣

∣

∣

∣

=

∣

∣

∣

∣

2n cos(2nx)

3n

∣

∣

∣

∣

≤
2n

3n

,

and
∑

(2/3)n is a convergent geometric series. Thus the series

∞
∑

n=1

2n cos(2nx)

3n

converges uniformly to g′(x), and g is differentiable on R. On the other hand, g′′(x) is not
defined for many values of x, because this time the series is only bounded by

∑

(4/3)n.

5. Let h(x) =

∞
∑

n=1

nxn−1.

Prove that this series converges and defines a continuous function on (−1, 1). (Hint: what
function has h(x) as its derivative?) Make sure that you reference all necessary theorems in
your argument.

Proof: Consider the function

f(x) =

∞
∑

n=0

xn.

We have seen in class that this series converges on the interval (−1, 1). Thus, by the fundamental
theorem of power series (Theorem 6.5.7 in the book), f(x) is differentiable on (−1, 1), and its
derivative is f ′(x) = h(x). Furthermore, again by Theorem 6.5.7, f(x) is differentiable infinitely
many times on (−1, 1). Since f ′′(x) is defined for all x ∈ (−1, 1), h(x) = f ′(x) is differentiable,
and therefore continuous.
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