Review Questions for the Final Exam

Math 320, Fall 2006

- **1.** Are the following true or false? Give a brief explanation or a counterexample.
 - If $\sup A \leq \inf B$, and A does not have a maximum, then a < b for all $a \in A$ and $b \in B$.
 - If the sequences (a_n) and (b_n) converge, then $(a_n b_n)$ converges.
 - Every bounded, monotonic sequence is Cauchy.
 - If $\sum a_n$ converges, and (b_n) is a bounded sequence, then $\sum a_n b_n$ converges.
 - An open set cannot contain any isolated points.
 - If A is a bounded set, then $\sup A$ is a limit point of A.
 - Every non-empty compact set contains a non-empty open set.
 - If $f: A \to \mathbb{R}$ is differentiable, and f'(x) > 0 for all x, then f is 1-to-1.
 - If $f: A \to \mathbb{R}$ is differentiable, A is connected, and f'(x) > 0 for all x, then f is 1-to-1.
 - If f_n converges to f on an interval A, and each f_n is an increasing function, then f is increasing.
 - If $f_n \to f$ uniformly on an interval A, and each f_n is differentiable, then f is differentiable.

2. A Buddhist monk leaves his monastery at 7 A.M. and climbs the neighboring mountain, arriving at the top at 7 P.M. After a night of meditation on the mountaintop, he starts descending at 7 A.M. the next day, and arrives at his monastery at 7 P.M. Prove that there is a time t, such that at time t the monk was at the same elevation on both days.

3. Prove that the function $f(x) = \ln x$ is uniformly continuous on $[1, \infty)$. (*Hint: show that* $|f'(x)| \leq 1$ on this interval, and use the Mean Value Theorem.) Is f(x) uniformly continuous on $(0, \infty)$?

4. Let
$$g(x) = \sum_{n=1}^{\infty} \frac{\sin(2^n x)}{3^n}$$
.

Prove that the sum converges on \mathbb{R} , and that g(x) is continuous on \mathbb{R} . Is g differentiable? Twice differentiable?

5. Let
$$h(x) = \sum_{n=1}^{\infty} nx^{n-1}$$
.

Prove that this series converges and defines a continuous function on (-1, 1). (*Hint: what function has* h(x) *as its derivative?*) Make sure that you reference all necessary theorems in your argument.