## Homework 3

## Due Wednesday, 1/31/07

1. Let $T$ be a torus with one point removed. Compute $\pi_{1}(T)$. Hint: there is a deformation retraction from $T$ onto a space that you already understand.
2. Let $M$ be a (path-connected) manifold of dimension $n$. Remove an open ball $B^{n}$ from $M$. Prove that when $n \geq 3$,

$$
\pi_{1}\left(M \backslash B^{n}\right) \cong \pi_{1}(M)
$$

(Note that by the previous problem, the assumption $n \geq 3$ is necessary.)
3. There is a standard way to glue together two manifolds $M$ and $N$ of the same dimension. Remove an open ball $B^{n}$ from each of $M$ and $N$, and glue $M \backslash B^{n}$ to $N \backslash B^{n}$ along the two $(n-1)$ dimensional boundary spheres. The resulting manifold is called the connected sum of $M$ and $N$, and is denoted $M \# N$. Prove that when $n \geq 3$,

$$
\pi_{1}(M \# N) \cong \pi_{1}(M) * \pi_{1}(N)
$$

4. Let $\Gamma$ be a connected graph. Let $E$ be an edge of $\Gamma$ that is not a loop (the endpoints of $E$ are distinct). Let $\Delta=\Gamma / E$, the graph obtained by identifying $E$ to a point. Prove that the quotient map $\varphi: \Gamma \rightarrow \Delta$ is a homotopy equivalence. (This follows from Proposition 0.17 in Chapter 0 , but in this case you should prove it directly.)
5. Let $\Gamma$ be a connected graph that has $v$ vertices and $e$ edges. Prove that $\pi_{1}(\Gamma)$ is the free group on $(e-v+1)$ generators. Hint: use Problem 4.
