Section 5.1

5.3 Disprove the statement: If $n \in[1,2,3,4,5]$, then $3 \mid\left(2 n^{2}+1\right)$.
5.6 Let $a, b \in \mathbb{Z}$. Disprove the statement: For every two positive integers a and b, $(a+b)^{3}=a^{3}+2 a^{2} b+2 a b+2 a b^{2}+b^{3}$.
5.8 For positive real numbers a and b, it can be shown that $(a+b)(1 / a+1 / b) \geq 4$. Does it therefore follow that $\left(c^{2}+d^{2}\right)\left(1 / c^{2}+1 / d^{2}\right) \geq 4$ for every two positive numbers c and d ?

Section 5.2

5.11 Prove that there is no smallest positive irrational number.
5.19 Prove that $\sqrt{3}$ is irrational. [Hint: First prove for an integer a that $3 \mid a^{2}$ if and only if $3 \mid a$. Recall that every integer can be written as $3 q, 3 q+1$, or $3 q+2$ for some integer q.
5.31 Use a proof by contradiction to prove the following. Let $m \in \mathbb{Z}$. If $3 X\left(m^{2}-1\right)$, then $3 \mid m$.

