(11.4) Prove that $3 \mid\left(n^{3}-n\right)$ for every integer $n$.
(11.6) Find all primes that are 1 less than a perfect cube.
(11.10) (a) Prove that $6 \mid\left(5 n^{3}+7 n\right)$ for every positive integer $n$.
(b) Observe that $5+7=12$ is a multiple of 6 . State and prove a generalization of the problem in (a).
(11.14) For an integer $n \geq 2$, let $m$ be the largest positive integer less than $n$ such that $m \mid n$. Then $n=m k$ for some positive integer $k$. Prove that $k$ is a prime.
(11.18) Show that, except for 2 and 5 , every prime can be expressed as $10 k+1,10 k+3$, $10 k+7$, or $10 k+9$, where $k \in \mathbb{Z}$.
(11.22) (a) Prove that the square of every integer that is not a multiple of 3 is of the form $3 k+1$, where $k \in \mathbb{Z}$.
(b) Prove that the square of no integer is of the form $3 m-1$, where $m \in \mathbb{Z}$.
(11.28) Prove for every positive integer $n$ that $n^{2}+1$ is not a multiple of 6 .
(11.32) Give an example of a set $S$ of four (distinct) positive integers such that the greatest common divisor of all six pairs of elements of $S$ is 6 .
(11.34) Prove for $a \in \mathbb{Z}$ and $n \in \mathbb{N}$ that $\operatorname{gcd}(a, a+n) \mid n$.
(11.36) For positive integers $a, b$ and $c$, the greatest common divisor, $\operatorname{gcd}(a, b, c)$, of $a, b$ and $c$ is the largest positive integer that divides all of $a, b$ and $c$. Let $d=\operatorname{gcd}(a, b, c)$, $e=\operatorname{gcd}(a, b)$ and $f=\operatorname{gcd}(e, c)$. Prove that $d=f$.
(11.37) Use the Euclidean Algorithm to find the greatest common divisor for each of the following pairs of integers:
(a) 51 and 288
(b) 357 and 629
(c) 180 and 252
(11.38) Determine integers $x$ and $y$ such that (see the previous exercise):
(a) $\operatorname{gcd}(51,288)=51 x+288 y$
(b) $\operatorname{gcd}(357,629)=357 x+629 y$
(c) $\operatorname{gcd}(180,252)=180 x+252 y$.
(11.42) Let $a, b \in \mathbb{Z}$, where one of $a, b$ is nonzero. Prove that if $d=\operatorname{gcd}(a, b), a=a_{1} d$ and $b=b_{1} d$, then $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$.

