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Master equations Introduction

What is a master equation?

• Let X : R+ → {x0, . . . , xn} be finite-state jump process
• Assuming X is a Markov process, the transition probabilities

p(i , t|j , s) = Prob{X (t) = xi | X (s) = xj} (t ≥ s ≥ 0)

satisfy the Chapman-Kolmogorov equations

p(i , t|j , s) = Σn
k=1p(i , t|k, u)p(k, u|j , s) (t ≥ u ≥ s).
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aij right-continuous, aij ≥ 0 (i 6= j), ajj = −Σi 6=jaij

one derives master equation from CKE in the limit ∆t → 0:

dpj
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= A(t)pj
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p(i , t|j , s) = Prob{X (t) = xi | X (s) = xj} (t ≥ s ≥ 0)

satisfy the Chapman-Kolmogorov equations

p(i , t|j , s) = Σn
k=1p(i , t|k, u)p(k, u|j , s) (t ≥ u ≥ s).

• Assuming transition probabilities are of the form

p(i , t + ∆t|j , t) = δij + aij(t)∆t + o(∆t) (t ≥ 0)

aij right-continuous, aij ≥ 0 (i 6= j), ajj = −Σi 6=jaij

one derives master equation from CKE in the limit ∆t → 0:

dpj

dt
= A(t)pj

A(t) = (aij(t)), pj = (p0j , . . . , pnj )
T , pij(t) = p(i , t|j , 0)

• Matrices like A(t) called W-matrices [van Kampen]
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Ion channel with two identical, independent subunits
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• Each subunit has two states: open or closed

• Channel has 3 states: x0, x1, x2 (i = # open subunits)

• Subunits open, close randomly with rates α, β

State diagram: x0

2α
−→
←−
β

x1

α
−→
←−
2β

x2
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Master equations Example

Master equation for ion channel kinetics
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• p(t) = (p0(t), p1(t), p2(t))
T = probability distribution for X (t)

pi (t) = Prob{X (t) = xi | p(0)}
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Master equation for ion channel kinetics
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• p(t) = (p0(t), p1(t), p2(t))
T = probability distribution for X (t)

pi (t) = Prob{X (t) = xi | p(0)}

Master equation:
dp

dt
= Ap =
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0 α −2β
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Master equations Example

Behavior of solutions of autonomous master equation

dp

dt
= Ap =
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2α −α − β 2β
0 α −2β
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.

A is decomposable if there exists
permutation matrix P such that

P−1AP =

[

A1 0
0 A2

]

A is splitting if there exists
permutation matrix P such that

P−1AP =





A1 0 B1

0 A2 B2

0 0 A3





For all W-matrices,

• All columns sum to zero ⇒ zero is eigenvalue

• Other eigenvalues have negative real part

• Zero is repeated eigenvalue ⇔ decomposable or splitting
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.

Proof.
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Theorem
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BAE, Keener (MSU, Utah) Nonautonomous master equations October 8, 2009 8 / 22



Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.

Proof.

• Let λ0, . . . , λn be ordering of eigenvalues of A such that

0 = λ0 ≥ ℜ(λ1) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for i = 1, . . . , n since A is not decomposable, splitting

BAE, Keener (MSU, Utah) Nonautonomous master equations October 8, 2009 8 / 22



Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.

Proof.

• Let λ0, . . . , λn be ordering of eigenvalues of A such that

0 = λ0 ≥ ℜ(λ1) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for i = 1, . . . , n since A is not decomposable, splitting

• Every probability distribution solution p of master equation is of form

p(t) = v0 + c1e
λ1tv1 + · · · + cne

λntvn

where vi ’s are eigenvectors and ci ’s are polynomials in t

BAE, Keener (MSU, Utah) Nonautonomous master equations October 8, 2009 8 / 22



Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.

Proof.

• Let λ0, . . . , λn be ordering of eigenvalues of A such that

0 = λ0 ≥ ℜ(λ1) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for i = 1, . . . , n since A is not decomposable, splitting

• Every probability distribution solution p of master equation is of form

p(t) = v0 + c1e
λ1tv1 + · · · + cne

λntvn

where vi ’s are eigenvectors and ci ’s are polynomials in t

• Therefore, p(t) → v0 independent of initial conditions

BAE, Keener (MSU, Utah) Nonautonomous master equations October 8, 2009 8 / 22



Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor

splitting, then every probability distribution solution of the master

equation approaches a unique stationary distribution.

Proof.

• Let λ0, . . . , λn be ordering of eigenvalues of A such that

0 = λ0 ≥ ℜ(λ1) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for i = 1, . . . , n since A is not decomposable, splitting

• Every probability distribution solution p of master equation is of form

p(t) = v0 + c1e
λ1tv1 + · · · + cne

λntvn

where vi ’s are eigenvectors and ci ’s are polynomials in t

• Therefore, p(t) → v0 independent of initial conditions

• Note: converse of theorem is also true
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Master equations Nonautonomous

Nonautonomous master equation
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• Ion channel kinetics depend on external factors – e.g., membrane
voltage and ligand concentration
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Master equations Nonautonomous

Nonautonomous master equation
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• Ion channel kinetics depend on external factors – e.g., membrane
voltage and ligand concentration

• Open and close rates α, β are functions of time!

• How will solutions behave now?
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Master equations Nonautonomous

Behavior of solutions of nonautonomous master equation
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dt
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Behavior of solutions of nonautonomous master equation
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Master equations Nonautonomous

Behavior of solutions of nonautonomous master equation
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Master equations Nonautonomous extensions of van Kampen’s theorem

First extension of van Kampen’s theorem

α(t) = β(t) = (t + 1)−1
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Master equations Nonautonomous extensions of van Kampen’s theorem

First extension of van Kampen’s theorem

Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and

f : R+ → R+ is right-continuous. Then every probability distribution

solutions of the master equation approaches a unique stationary

distribution if and only if M is neither decomposable nor splitting and f is

not integrable.
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First extension of van Kampen’s theorem

Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and

f : R+ → R+ is right-continuous. Then every probability distribution

solutions of the master equation approaches a unique stationary

distribution if and only if M is neither decomposable nor splitting and f is

not integrable.

• Proof similar to van Kampen’s theorem since FMS is

Φt
0 = exp

(
∫ t

0
A(t)

)

= exp (F (t)M)

(

F (t) =

∫ t

0
f (s) ds

)
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Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and

f : R+ → R+ is right-continuous. Then every probability distribution

solutions of the master equation approaches a unique stationary
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0 = exp

(
∫ t

0
A(t)

)
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(

F (t) =

∫ t

0
f (s) ds

)

• Hence every probability distribution solution p is of form

p(t) = v0 + c1e
µ1F (t)v1 + · · · + cne

µnF (t)vn

where µi , vi are eigenpairs of M and ci ’s are polynomials in F (t)
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Master equations Nonautonomous extensions of van Kampen’s theorem

First extension of van Kampen’s theorem

Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and

f : R+ → R+ is right-continuous. Then every probability distribution

solutions of the master equation approaches a unique stationary

distribution if and only if M is neither decomposable nor splitting and f is

not integrable.

• Proof similar to van Kampen’s theorem since FMS is

Φt
0 = exp

(
∫ t

0
A(t)

)

= exp (F (t)M)

(

F (t) =

∫ t

0
f (s) ds

)

• Hence every probability distribution solution p is of form

p(t) = v0 + c1e
µ1F (t)v1 + · · · + cne

µnF (t)vn

where µi , vi are eigenpairs of M and ci ’s are polynomials in F (t)

• p(t) → v0 ⇔ ℜ(µi) < 0 for i = 1, . . . , n, and F (t) → ∞
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Master equations Nonautonomous extensions of van Kampen’s theorem

Extension for asymptotically periodic A

α = Θ(sin(πt)), β = Θ(cos(πt))
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• In both cases, A approaches a periodic matrix
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Master equations Nonautonomous extensions of van Kampen’s theorem

Extension for asymptotically periodic A

Definition

The probability distribution solutions of a master equation are globally

asymptotically stable (GAS) if for every pair of such solutions p,q

p(t) − q(t) → 0 as t → ∞.
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Extension for asymptotically periodic A

Definition

The probability distribution solutions of a master equation are globally

asymptotically stable (GAS) if for every pair of such solutions p,q

p(t) − q(t) → 0 as t → ∞.

Theorem

Suppose A is a right-continuous, W-matrix-valued function, and that there

exists a continuous, periodic, W-matrix-valued function B, whose ω-limit
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such that
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set contains at least one matrix that is neither decomposable nor splitting,

such that

lim
t→∞

||A(t) − B(t)|| = 0.

Then the probability distribution solutions of the master equation are GAS.

• Proof: For large t, L1-norm of p − q must decrease by some uniform,
nonzero amount during each period of B .
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Theorem

If A is differentiable, W-matrix-valued function such that both A and its

derivative are bounded, and the ω-limit set of A contains no matrix which

is either decomposable or splitting, then probability distribution solutions

of the master equation are GAS.

• Proof: if ||p(t) − q(t)||1 → r > 0, then ω(A) contains a
decomposable or splitting matrix
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Master equations Conjectures and counterexamples

One might conjecture...

• Let λ0, λ1, . . . , λn be an ordering of the eigenvalues of A such that

0 = λ0(t) ≥ ℜ(λ1(t)) ≥ · · · ≥ ℜ(λn(t))
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Conjecture

If ℜ(λ1) is not integrable, then all probability distribution solutions of the

master equation are GAS.

• Fact: ℜ(λ1(t)) < 0 implies d||p(t)−q(t)||1
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• Asymptotically periodic: λ1 approaches a nonpositive periodic function
which is negative at least once during each period

• A′ bounded: ω(λ1) is contains negative number, λ′

1 bounded

Conjecture

If ℜ(λ1) is not integrable, then all probability distribution solutions of the

master equation are GAS.

• Fact: ℜ(λ1(t)) < 0 implies d||p(t)−q(t)||1
dt

< 0

• The nonintegrability of ℜ(λ1) “should” ensure that
||p(t) − q(t)||1 → 0
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Master equations Conjectures and counterexamples

Counterexample for conjecture

A(t) =
1 − cos(πt)

2
A1(t) +

1 − cos(π(t + 1))

2
A2(t)

A1(t) =









−1 0 0 0

1 − 1
t+1 0 0

0 1
t+1 − 1

t+1 0

0 0 1
t+1 0









, A2(t) =









− 1
t+1

1
t+1 0 0

0 − 1
t+1 1 0

0 0 −1 0
1

t+1 0 0 0









,
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• A′ bounded, A not decomposable, splitting ⇒ λ1 not integrable
• Ae4 = 0 ⇒ e4 is stationary distribution
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Master equations Conjectures and counterexamples

Converse of conjecture is false

A(t) =

{

A1, t ∈ [0, 1),

A2, t ∈ [1, 2).
A1 =





−1 1 0
1 −1 0
0 0 0



 , A2 =





0 0 0
0 −1 1
0 1 −1
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• λ1(t) = 0 for all t ≥ 0 but solutions are GAS
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Master equations Conjectures and counterexamples

New conjecture?
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New conjecture?

Theorem

If the derivative of A is bounded and the ω-limit set of A contains no

matrix which is either decomposable or splitting, then probability

distribution solutions of the master equation are GAS.
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Master equations Conjectures and counterexamples

New conjecture?

Theorem

If the derivative of A is bounded and the ω-limit set of A contains no

matrix which is either decomposable or splitting, then probability

distribution solutions of the master equation are GAS.

Conjecture

If the derivative of A is bounded and the ω-limit set of contains at least

one matrix which is neither decomposable nor splitting, then the

probability distribution solutions of the master equation are GAS.
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The end

Thank you!

Thanks to

• Jim Keener (Utah)

• NSF
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