EXTERIOR BLOCKS OF NONCROSSING PARTITIONS

BERTON A. EARNSHAW

ABSTRACT. This paper defines an *exterior block* of a noncrossing partition, then gives a formula for the number of noncrossing partitions of the set [n] with k exterior blocks. Certain identities involving Catalan numbers are derived from this formula.

1. INTRODUCTION

A noncrossing partitions is a partition π of the set $[n] := \{1, 2, ..., n\}$ such that whenever $1 \leq a < b < c < d \leq n$ and a and c are in the same block of π and b and d are in the same block of π , then actually a, b, c and d are all in the same block of π . The collection of noncrossing partitions of [n] is denoted by NC_n. We typically write noncrossing partitions using a '/' to delimit the blocks of the partition and a ',' to delimit the elements within each block. For example, the partition $\pi = \{\{1, 4, 6\}, \{2, 3\}, \{5\}, \{7\}, \{8, 10\}, \{9\}, \{11, 12\}\} \in \text{NC}_{12}$ is typically written $\pi = 1, 4, 6/2, 3/5/7/8, 10/9/11, 12$. Notice that we have written the blocks in ascending order of their least element. Noncrossing partitions can be conveniently visualized in their *linear* representations; that is, we place n nodes 1, 2, ..., n in ascending order on a line, and indicate that two elements are in the same block by drawing an arc connecting the two. All the arcs must be drawn in the same half-plane. Figure 1 gives the linear representation of 1, 4, 6/2, 3/5/7/8, 10/9/11, 12. We will make use of the linear representation of a noncrossing partition throughout this paper.

FIGURE 1. Linear representation of 1, 4, 6/2, 3/5/7/8, 10/9/11, 12

2. EXTERIOR BLOCKS AND THE FUNCTION e(n, k)

For ease of discussion we give a preliminary definition. Given a block $B \in \pi$, we will denote the least and greatest elements of B by first(B) and last(B), respectively, and will call them the *first* and *last* elements of B, respectively.

 $Key\ words\ and\ phrases.$ noncrossing partition, exterior block, Catalan triangle, Catalan identity.

Definition 2.1. Let $\pi \in NC_n$. A block $B \in \pi$ is an *interior block* of π if there exists a block $C \in \pi$ such that $first(C) < first(B) \le last(B) < last(C)$. If B is not an interior block, then it is an *exterior block* of π .

Intuitively, given a noncrossing partition π of [n], an interior block of π is one which is nested inside another block in the linear representation of π . An exterior block of π is one which is not nested in any other block. Consider Figure 1 which is the linear representation of $\pi = 1, 4, 6/2, 3/5/7/8, 10/9/11, 12 \in \text{NC}_{12}$. It is easy to see that $\{2,3\}, \{5\}$ and $\{9\}$ are the interior blocks of π , while $\{1,4,6\}, \{7\}, \{8.10\}$ and $\{11,12\}$ are the exterior blocks of π .

Let $E_{n,k}$ be the subset of NC_n consisting of all noncrossing partitions of [n] with k exterior blocks and define

$$\mathbf{e}(n,k) = |\mathbf{E}_{n,k}|$$

so that e(n,k) counts the number of noncrossing partitions of [n] with k exterior blocks. What sort of function is e(n,k)?

Propostion 2.1. e(n,k) = 0 whenever k = 0 or k > n.

Proof. If k = 0, we are asking how many noncrossing partitions of [n] have no exterior blocks. It is easy to see that the block containing 1 is an exterior block of any noncrossing partition. Thus e(n, 0) = 0. Since any partition of [n] can have at most n blocks, it can have at most n exterior blocks. So if k > n, e(n, k) = 0. \Box

Theorem 2.1. $e(n,1) = C_{n-1}$, where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the *n*th Catalan number.

Proof. It is easy to see that $e(1,1) = 1 = C_0$. Assume n > 1. It is also easy to see that a noncrossing partition π of [n] with one exterior block necessarily has 1 and n in the same block. Call this block B (see Figure 2, where n = 6, $\pi = 1, 4, 6/2, 3/5$ and $B = \{1, 4, 6\}$). The partition

$$\pi' = (\pi \setminus \{B\}) \cup \{B \setminus \{n\}\}$$

is then a noncrossing partition of [n-1] (π' is simply π with the element *n* removed; see Figure 3). Define a map $\phi : E_{n,1} \to NC_{n-1}$ by the above operation $\pi \mapsto \pi'$. The map ϕ is clearly invertible, with inverse map ϕ^{-1} given by

$$\phi^{-1}(\sigma) = (\sigma \setminus \{A\}) \cup \{A \cup \{n\}\}$$

where $\sigma \in NC_{n-1}$ and A is the block of σ containing the element 1 (see Figures 4 and 5, where n = 6, $\sigma = 1, 2/3/4, 5$ and $A = \{1, 2\}$). Therefore ϕ is a bijection, proving

$$e(n,1) = |E_{n,1}| = |NC_{n-1}| = C_{n-1}.$$

FIGURE 2. Linear representation of $\pi = 1, 4, 6/2, 3/5 \in E_{6,1}$

Theorem 2.2. e(n,k) = e(n-1,k-1) + e(n,k+1) for $n \ge 2$ and $k \ge 1$.

FIGURE 3. Linear representation of $\pi' = \phi(\pi) = 1, 4/2, 3/5 \in E_{5,2}$

FIGURE 4. Linear representation of $\sigma = 1, 2/3/4, 5 \in E_{5,3}$

FIGURE 5. Linear representation of $\phi^{-1}(\sigma) = 1, 2, 6/3/4, 5 \in E_{6,1}$

Proof. Clearly e(n-1, k-1) counts the number of noncrossing partitions π of $E_{n,k}$ having the singleton $\{n\}$ as a block since $\pi \setminus \{n\} \in E_{n-1,k-1}$. Thus we want to show that e(n, k+1) counts the number of noncrossing partitions of $E_{n,k}$ that do not have $\{n\}$ as a block. Let $E'_{n,k}$ be that set.

It is easy to see that if $k \in [n-1]$ then there exists a noncrossing partition with k exterior blocks whose block containing n is not a singleton. Thus if $E'_{n,k}$ is empty, then necessarily $k \ge n$. But then e(n, k + 1) = 0 by Proposition 2.1 and we are done.

If $\mathcal{E}'_{n,k}$ is not empty, then for any $\pi\in\mathcal{E}'_{n,k},$ let B be the block of π containing n and let

$$\pi' = (\pi \setminus \{B\}) \cup \{B \setminus \{n\}, \{n\}\}$$

(see Figures 6 and 7, where n = 6, k = 2, $\pi = 1, 2/3, 4, 6/5$ and $B = \{3, 4, 6\}$). Now π' is a noncrossing partition of [n] with more than k exterior blocks. Let C be the block of π' just to the right of $B \setminus \{n\}$ in the linear representation of π' ; that is, $last(B \setminus \{n\}) + 1 = first(C)$ $(B \setminus \{6\} = \{3, 4\}$ and $C = \{5\}$ in Figure 7). Let

$$\pi'' = (\pi \setminus \{C, \{n\}\}) \cup \{C \cup \{n\}\}$$

(see Figure 8). Now $\pi'' \in E_{n,k+1}$. Define a map $\psi : E'_{n,k} \to E_{n,k+1}$ by the above operation $\pi \mapsto \pi''$. The map ψ is clearly invertible with inverse map ψ^{-1} given by

$$\psi^{-1}(\sigma) = (\sigma \setminus \{A\}) \cup \{D \cup \{n\}, A \setminus \{n\}\}$$

where $\sigma \in E_{n,k+1}$ and A is the block of σ containing n and D is the block of σ just to the left of A in the linear representation of σ ; that is, last(D) + 1 = first(A) (see Figures 9 and 10, where n = 6, k = 2, $\sigma = 1, 2/3/4, 5, 6$, $A = \{4, 5, 6\}$ and $D = \{3\}$). Therefore, ψ is a bijection and

$$|\mathbf{E}'_{n,k}| = |\mathbf{E}_{n,k+1}| = \mathbf{e}(n,k+1).$$

We have proven the desired recurrence.

.

This recurrence relations allows us to write out a table of values for e(n, k) (see Figure 11). Notice that the values of the first two columns of this table come

FIGURE 6. Linear representation of $\pi = 1, 2/3, 4, 6/5 \in E'_{6,2}$

FIGURE 7. Linear representation of $\pi' = 1, 2/3, 4/5/6 \in E_{6,4}$

FIGURE 8. Linear representation of $\pi'' = \psi(\pi) = 1, 2/3, 4/5, 6 \in E_{6,3}$

FIGURE 9. Linear representation of $\sigma = 1, 2/3/4, 5, 6 \in E_{6,3}$

from Proposition 2.1 and Theorem 2.1, while the rest of the values come from the recurrence relation written as e(n, k + 1) = e(n, k) - e(n - 1, k - 1).

Catalan numbers abound in this table. Notice that the second and third columns (corresponding to k = 1 and k = 2) contain Catalan numbers. The first column is, of course, given to us by Theorem 2.1. When k = 2 and $n \ge 2$, the recurrence relation plus Proposition 2.1 shows us that

$$e(n,2) = e(n,1) - e(n-1,0) = C_{n-1} - 0 = C_{n-1}$$

Notice that the *n*th row adds up to C_n . This is clear since the sets

$$E_{n,1}, E_{n,2}, ..., E_{n,n}$$

partition NC_n . This fact gives

(2.1)
$$C_n = |\mathrm{NC}_n| = |\cup_{k=1}^n \mathrm{E}_{n,k}| = \Sigma_{k=1}^n |\mathrm{E}_{n,k}| = \Sigma_{k=1}^n \mathrm{e}(n,k)$$

Also notice the strong resemblance of this table with the various formulations of *Catalan's triangle* (cf. [1], also sequences A053121, A008315, etc. in [4]). Figure 12 is a typical Catalan triangle. It is also called a Pascal semi-triangle since if w(n, k) represents the value in the *n*th row and *k*th column of this table, then for $n \ge 1$ and $k \ge 1$, w(n, k) satisfies the recurrence relation

$$w(n,k) = w(n-1,k-1) + w(n-1,k+1).$$

Notice that the diagonals $w(2n, 0), w(2n - 1, 1), \ldots, w(n, n)$ of this triangle are the rows $e(n + 1, 1), e(n + 1, 2), \ldots, e(n + 1, n + 1)$ in Figure 11.

Theorem 2.3. $e(n,k) = \frac{k}{n} \binom{2n-k-1}{n-1}$.

Proof. It is easy to check that this formula satisfies Proposition 2.1 and Theorems 2.1 and 2.2. $\hfill \Box$

FIGURE 10. Linear representation of $\psi^{-1}(\sigma) = 1, 2/3, 6/4, 5 \in E'_{6,2}$

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	Total
1	0	1	0	0	0	0	0	0	0	0	0	1
2	0	1	1	0	0	0	0	0	0	0	0	2
3	0	2	2	1	0	0	0	0	0	0	0	5
4	0	5	5	3	1	0	0	0	0	0	0	14
5	0	14	14	9	4	1	0	0	0	0	0	42
6	0	42	42	28	14	5	1	0	0	0	0	132
7	0	132	132	90	48	20	6	1	0	0	0	429
8	0	429	429	297	165	75	27	7	1	0	0	1430
9	0	1430	1430	1001	572	275	110	35	8	1	0	4862
10	0	4862	4862	3432	2002	1001	429	154	44	9	1	16796

FIGURE 11. Table of values of e(n, k)

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	Total
0	1	0	0	0	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0	0	0	0	0	1
2	1	0	1	0	0	0	0	0	0	0	0	2
3	0	2	0	1	0	0	0	0	0	0	0	3
4	2	0	3	0	1	0	0	0	0	0	0	6
5	0	5	0	4	0	1	0	0	0	0	0	10
6	5	0	9	0	5	0	1	0	0	0	0	20
7	0	14	0	14	0	6	0	1	0	0	0	35
8	14	0	28	0	20	0	7	0	1	0	0	70
9	0	42	0	48	0	27	0	8	0	1	0	126
10	42	0	90	0	75	0	35	0	9	0	1	252

FIGURE 12. A Catalan Triangle

3. CATALAN IDENTITIES

Using the formulation $e(n,k) = \frac{k}{n} {\binom{2n-k-1}{n-1}}$ of Theorem 2.3, we can derive two identities involving Catalan numbers. The first comes by replacing e(n,k) in Equation 2.1 by this formula:

$$C_n = \sum_{k=1}^n e(n,k) = \sum_{k=1}^n \frac{k}{n} \binom{2n-k-1}{n-1}.$$

The second identity comes by considering the number of ways the element n + 1 can be added to a noncrossing partition π of [n] to get a noncrossing partition π' of [n + 1]. It is clear that if π has k exterior blocks, then there are k + 1 ways to form a new noncrossing partition π' : k ways by adding the element n + 1 to each of the exterior blocks, and one way by adding the singleton $\{n + 1\}$ to π . Since there

are e(n, k) noncrossing partitions of [n] with k exterior blocks, there are a total of (k + 1)e(n, k) noncrossing partitions of [n + 1] gotten in this way. Summing these formulae over the possible number of exterior blocks gives

$$C_{n+1} = |\mathrm{NC}_{n+1}| = \sum_{k=1}^{n} (k+1)\mathrm{e}(n,k) = \sum_{k=1}^{n} \frac{k(k+1)}{n} \binom{2n-k-1}{n-1}.$$

References

- Richard K. Guy. Catwalks, Sandsteps and Pascal pyramids. J. Integer Seq., 3(1):Article 00.1.6, 1 HTML document (electronic), 2000.
- [2] G. Kreweras. Sur les partitions non croisées d'un cycle. Discrete Math., 1(4):333-350, 1972.
- [3] Rodica Simion and Daniel Ullman. On the structure of the lattice of noncrossing partitions. Discrete Math., 98(3):193-206, 1991.
- [4] N. J. A. Sloane. The On-line Encyclopedia of Integer Sequences.

BERTON A. EARNSHAW, DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UT 84602 U.S.A.

 $E\text{-}mail\ address:\ \texttt{bertonQmath.byu.edu}$