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The amazing brain
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Neurons communicate at synapses

Kandel, Schwartz & Jessel (2000)
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Synapses can “learn”

Collingridge et al., Nat. Rev. Neurosci. (2004)
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Synapses “learn” by regulating receptor numbers

Scannevin & Huganir, Nat. Rev. Neurosci. (2000)
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Receptor trafficking at synapses

Sheng & Kim, 2002

constitutively recycled with intracellular stores

AMPA receptors turned over in 10-30 mins (or 16 hrs?)

immobilized by scaffolding proteins in synapse

diffuse laterally within membrane
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Receptors diffuse laterally between synapses

Triller & Choquet, Nat. Rev. Neurosci. (2003)
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How are receptors transported to synapses?
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Synapses located in dendritic spines

Kandel, Schwartz & Jessel (2000)
Matus, Science (2000)
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Long-range transport of receptors along spiny dendrite

1. somatic exocytosis

2. lateral membrane diffusion

3. surface entry into spine

4. local exo/endocytosis

1
2 3

4

Groc & Choquet, 2006

motor transport along microtubules

diffusion within dendritic membrane? (Adesnik et al., 2005)
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How should we model diffusion-trapping of receptors?
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Treat dendritic membrane as cylinder with holes

x = 0

spine

x = L

Jsoma DEG

END
EXO

receptor

scaffolding
protein

PSD

DEL
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Diffusion equation on dendritic membrane

∂U

∂t
= D∇2U on Ωε

y = πl

x = 0 x = L
y = -πl

Ωε

Ωj

U = receptor concentration

Ωε is rectangle (0,L) × (−πl , πl) minus the holes

Ωj = {r ∈ Ω0 | |r − rj | ≤ ερ}, j = 1, . . . ,N
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Boundary conditions

Periodic bcs at y = ±πl

No-flux bc at x = L, and at x = 0

−D
∂U

∂x
= Jsoma =

σ

2πl

bcs at the holes:

−εD
∂U

∂n
(r, t) =

µj

2πρ
(U(r, t) − Rj), r ∈ ∂Ωj

µj = spine neck hopping rate
Rj = receptor concentration on surface of jth spine

y = πl

x = 0 x = L
y = -πl

Ωε

Ωj
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Treat each spine as having 3 compartments

P, Q:   unbound, bound receptor concentrations in PSD

R, U:   free receptor concentrations in spine head, dendrite

C:      number of intracellular receptors

k, σEXO: rates of endocytosis, exocytosis

σDEG, δ: rates of degradation, intracellular delivery

h, µ: hopping rates across boundary of PSD, spine neck

α(Z-Q):    rate of binding to scaffolding (Z = scaffolding concentration)

β:    rate of unbinding from scaffolding

kσEXO

C

R Uµ

σDEG

h
PQ

α(Z-Q)

β

δ
AMPA receptor

scaffolding protein

PSD Spine Head

END
EXO

DEGDEL
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Steady-state solution

All steady-state concentrations at jth spine depend on the
mean value of U on ∂Ωj :

Uj =
1

2περ

∫

∂Ωj

U(r)dr
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Steady-state solution

All steady-state concentrations at jth spine depend on the
mean value of U on ∂Ωj :

Uj =
1

2περ

∫

∂Ωj

U(r)dr

Uj ’s are determined by solving ∇2U = 0 in Ωε with bcs
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Steady-state solution

All steady-state concentrations at jth spine depend on the
mean value of U on ∂Ωj :

Uj =
1

2περ

∫

∂Ωj

U(r)dr

Uj ’s are determined by solving ∇2U = 0 in Ωε with bcs

But this is hard because of bcs at the holes!

−εD
∂U

∂n
(r) =

µj

2πρ
(U(r) − Rj), r ∈ ∂Ωj
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Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole
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Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole

Singular perturbation: match logarithmic solutions in each
inner region

|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j
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Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole

Singular perturbation: match logarithmic solutions in each
inner region

|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

Solution has N + 1 unknowns: Uj ’s and integration constant
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Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole

Singular perturbation: match logarithmic solutions in each
inner region

|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

Solution has N + 1 unknowns: Uj ’s and integration constant

2 Substitute this solution into N simplified bcs at holes

−εD
∂U

∂n
(r) =

µ̂j

2πρ
(Uj − R̂j), r ∈ ∂Ωj



Trafficking at synapses Long-range Transport 2D Discrete Model 1D Discrete Model 1D Continuum Model

Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole

Singular perturbation: match logarithmic solutions in each
inner region

|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

Solution has N + 1 unknowns: Uj ’s and integration constant

2 Substitute this solution into N simplified bcs at holes

−εD
∂U

∂n
(r) =

µ̂j

2πρ
(Uj − R̂j), r ∈ ∂Ωj

3 Conservation condition gives (N + 1)th equation

σ =
∑

µ̂j

(
Uj − R̂j

)
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Effect of ε on solution

ερ = 0.01
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ερ = 0.1
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ερ = 0.4
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C

Dendrite 2µm long, circumference 1µm

One spine at r = (1, 0.5)

Numerical solutions look similar
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Comparison of dendritic receptor concentration

perturbation solution

A

numerical solution

Dendrite 100µm long, circumference 1µm, ǫρ = 0.1µm

100 identical spines spaced 1µm apart, all in a row

Solutions are almost identical!

Similar results if spines are not identical, not in a row
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Can we make things simpler?
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2D model well-approximated by 1D model

When the aspect ratio L/l ≫ 1, we can approximate 2D model by
the following 1D model

∂U

∂t
= D

∂2U

∂x2
−

N∑

j=1

δ(x − xj)µj(Uj − Rj)

−D
∂U

∂x

∣∣∣∣
x=0

= Jsoma,
∂U

∂x

∣∣∣∣
x=L

= 0.
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Comparison of models

2D model
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2D model as before

Dendrite 100µm long, circumference 1µm, ǫρ = 0.1µm
100 identical spines spaced 1µm apart, all in a row

1D model use same parameters when relevant

Solutions are almost identical!
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Can we make things even simpler?
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Treat spine population as continuous density

If spines are sufficiently dense, treat sum of delta functions as a
density η

∂U

∂t
= D

∂2U

∂x2
− η(x)µ(x)(U − R)

−D
∂U

∂x

∣∣∣∣
x=0

= Jsoma,
∂U

∂x

∣∣∣∣
x=L

= 0.
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Steady-state solution for identical spines: “cable” equation

Assume all parameters are x-independent, then get “cable”
equation for receptor trafficking

d2U

dx2
− Λ2U = −Λ2R̂

Λ =

√
ηµ̂

D
is length-scale of diffusive coupling
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Steady-state solution for identical spines: “cable” equation

Assume all parameters are x-independent, then get “cable”
equation for receptor trafficking

d2U

dx2
− Λ2U = −Λ2R̂

Λ =

√
ηµ̂

D
is length-scale of diffusive coupling

Solve using Green’s function methods

U(x) =
Jsoma

D

cosh(Λ(x − L))

Λ sinh(ΛL)
+ R̂
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Steady-state receptor concentrations for identical spines
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Piccini & Malinow, 2002
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Dendrite 1 mm long

1,000 identical spines spaced 1µm apart

Two sources of receptors

at soma
local intracellular delivery
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Consequences of diffusive coupling

10-fold reduction in
rate of exocytosis

in gray region
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10-fold increase in
rate of endocytosis

in gray region
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Steady-state is nice...
...but what about time-dependent phenomena?



Trafficking at synapses Long-range Transport 2D Discrete Model 1D Discrete Model 1D Continuum Model

AMPA receptor recycling via thrombin cleavage

Passafaro et al., Nat. Neurosci. (2001)
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AMPA receptor recycling via photoinactivation

Adesnik et al., Neuron (2005)
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Fast or slow recycling of AMPA receptors?

Passafaro et al., 2001 Adesnik et al., 2005
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Simulation of photoinactivation of AMPA receptors

No intracellular delivery but source at soma

In steady-state t < 0

At t = 0 all surface AMPA receptors instantaneously
“inactivated”
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Simulation of photoinactivation of AMPA receptors

No intracellular delivery but source at soma

In steady-state t < 0

At t = 0 all surface AMPA receptors instantaneously
“inactivated”
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Rates of exo/endocytosis are fast (10-30 mins)
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Rate of recycling depends on distance from soma
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Fast exo/endocytosis consistent with slow recycling

There are many time scales!
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Future directions

Models with many kinds of receptors (AMPA, NMDA,
kainate, etc.)

Models with receptor function, electrophysiology

Computational learning rules (e.g., STDP)

Role of AMPA receptor trafficking in Alzheimer’s disease

Stochastic models
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Intrinsic vs. extrinsic noise of synaptic trafficking

ν
PQ

α(Z-Q)

β

AMPA receptor

scaffolding protein

PSD

END
EXO

DEGDEL

σ

intrinsic noise: e.g., binding/unbinding

extrinsic noise: e.g., fluctuating gate
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Time-course of variance during FRAP
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Time-course of variance during Inverse FRAP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time [s]

va
ri

an
ce

 

 

dynamic
static
mean

D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

time [s]

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

55

60

time [s]

F
20 receptors10 receptors2 receptors

black: with binding

gray: no binding


	Receptor trafficking at synapses
	Long-range transport of receptors
	Trafficking model with 2D membrane, discretely distributed spines
	Trafficking model with 1D membrane, discretely distributed spines
	Trafficking model with 1D membrane, continuously distributed spines
	And more...

