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Introduction

Motivation� AMPA (�-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) receptors mediate the
majority of fast excitatory synaptic transmission in the central nervous system (CNS).� Experimental evidence suggests that fast AMPA receptor trafficking at the synapses con-
tributes to persistent, activity-dependent changes in synaptic strength, such as long term
potentiation (LTP) and depression (LTD).� Such changes are thought to be necessary subcellular components of learning and memory.� The precise mechanisms underlying the activity-dependent regulation of AMPA receptor
trafficking are currently not known.

Goals of Study� Develop a mathematical model of AMPA receptor trafficking that includes all trafficking
pathways.� Use the model to examine trafficking under basal conditions and explore the mechanisms
underlying activity-dependent trafficking.

AMPA Receptor Trafficking
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Postsynaptic Trafficking Pathways1� Synthesis and degradation of receptors in intracellu-
lar pools.� Exo/endocytic exchange of surface receptors with
intracellular pools.� Lateral diffusion of surface receptors in the extrasy-
naptic membrane (ESM) and postsynaptic density
(PSD).� Binding/unbinding to scaffolding proteins in the
PSD.

Two Types of AMPA Receptors at CNS Excitatory Synapses10� Type I: Long C-terminus tail, usually composed of GluR1 and GluR2 subunits. This type is
thought to be responsible for LTP.� Type II: Short C-terminus tail, usually composed of GluR2 and GluR3 subunits. This type is
thought to be responsible for constitutive recycling under basal conditions and LTD.
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Diffusion Model of AMPA Receptor Trafficking

Type I (GluR1/2) Equations@PI@t = DrIr2PI � �I(L�QI �QII)PI + �IQI ; 0 � r < r0@QI@t = �I(L�QI �QII)PI � �IQI ; 0 � r < r0@RI@t = DzIr2RI � kIRI + �ISI=Az; 0 < z < z0dSIdt = ��ISI + �I

Type II (GluR2/3) Equations@PII@t = DrIIr2PII � �II(L�QI �QII)PII + �IIQII + �II=Ar; 0 � r < r0@QII@t = �II (L�QI �QII)PII � �IIQII ; 0 � r < r0@RII@t = DzIIr2RII � kIIRII ; 0 < z < z0

Boundary Conditions JrI(r0) = hI(PI (r0)�RI (0))JrII(r0) = hII(PII (r0)�RII(0))
IJzI(z0) = RI(z0)�RI0
IIJzII(z0) = RII(z0)�RII0
ESM

r0

z0

PSD

Model geometry of dendritic spine

DefinitionsP = concentration of free receptors in the PSDQ = concentration of bound receptors in the PSDR = concentration of receptors in the ESMS = number of receptors in intracellular poolDr = diffusivity in the PSDDz = diffusivity in the ESML = concentration of active binding sites in the PSD� = rate of binding to active binding sites� = rate of unbinding from active binding sites� = basal rate of exocytosis� = dynamic rate of exocytosis per intracellular receptork = rate of endocytosisJr = flux of free receptors in the PSDJz = flux of free receptors in the ESMh = PSD-ESM junction hopping rate
 = diffusive impedance at ESM-dendritic shaft junctionR0 = background receptor concentration in dendritic shaft

Steady-state Trafficking under Basal Conditions

Steady-state receptor concentration and flux
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� The majority of receptors in the PSD (ESM) are
GluR2/3 (GluR1/2).� The positive flux represents a PSD-to-ESM flux, and
the negligible flux at the ESM-shaft junction means
receptors were endocytosed.� Together, we have constitutive recycling of GluR2/3
receptors.� These results are consistent with Nusser et al., 1998,
and Cottrell et al., 2000.

Blockade of Endocytosis
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Blockade of Exocytosis
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� These time courses are consistent
with Luscher et al., 1999.

Trafficking during LTP

To induce LTP, we increase the type I dynamic rate of exocytosis �I , hopping rate hI , and binding
rate �I , and increase the concentration of active binding sites L.
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Time course of receptors in PSD and ESM during LTP
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Exchange of GluR1/2 for GluR2/3 after LTP

� The LTP time courses are consistent with
Hanse and Gustafsson, 1992, and O’ Con-
nor et al., 2005.� The exchange time courses are consistent
with McCormack et al., 2006.

Trafficking during LTD

To induce LTD, we use an extended model to capture the GRIP-to-PICK association change of
GluR2/3 receptors, and the loss of active binding sites:@QII@t = �II(L�QI �QII �Q�II)PII � �IIQII � �QII + �Q�II ; 0 � r < r0@Q�II@t = ���IIQ�II + �QII � �Q�II ; 0 � r < r0@L@t = �(L�QI �QII �Q�II); 0 � r < r0
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Time course of receptors in PSD during
low-frequency stimulus, resulting in LTD
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Time course of receptors in PSD during
medium-frequency stimulus, with no LTD
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Saturation of LTD, then LTP

� The LTD time courses are consistent with
Dudek and Bear, 1992.� The saturation time courses are consistent
with Dudek and Bear, 1993.


