# Global asymptotic stability of solutions of nonautonomous master equations 

Berton A. Earnshaw James P. Keener<br>Department of Mathematics<br>University of Utah

March 21, 2009

## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$ be finite-state jump process


## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$ be finite-state jump process
- Since jump process is Markov process, the transition probabilities

$$
p\left(x_{i}, t \mid x_{j}, s\right)=\operatorname{Prob}\left\{X(t)=x_{i} \mid X(s)=x_{j}\right\} \quad(t \geq s \geq 0)
$$

satisfy Chapman-Kolmogorov equation

$$
p\left(x_{i}, t \mid x_{j}, s\right)=\sum_{k=1}^{n} p\left(x_{i}, t \mid x_{k}, u\right) p\left(x_{k}, u \mid x_{j}, s\right) \quad(t \geq u \geq s)
$$

## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$ be finite-state jump process
- Since jump process is Markov process, the transition probabilities

$$
p\left(x_{i}, t \mid x_{j}, s\right)=\operatorname{Prob}\left\{X(t)=x_{i} \mid X(s)=x_{j}\right\} \quad(t \geq s \geq 0)
$$

satisfy Chapman-Kolmogorov equation

$$
p\left(x_{i}, t \mid x_{j}, s\right)=\sum_{k=1}^{n} p\left(x_{i}, t \mid x_{k}, u\right) p\left(x_{k}, u \mid x_{j}, s\right) \quad(t \geq u \geq s)
$$

- Assuming transition probabilities are of the form

$$
p\left(x_{i}, t+\Delta t \mid x_{j}, t\right)=a_{i j}(t) \Delta t+o(\Delta t) \quad(t \geq 0)
$$

one derives master equation from CKE in limit $\Delta t \rightarrow 0$ :

$$
\frac{d \mathbf{p}}{d t}=A(t) \mathbf{p}
$$

where off-diagonal entries are $a_{i j}(t) \geq 0$ and $a_{j j}(t)=-\sum_{i \neq j} a_{i j}(t)$

## Ion channel with two identical subunits



- Each subunit either open or closed
- channel has 3 states: $S_{0}, S_{1}, S_{2}$ ( $i=\#$ open subunits)


## Ion channel with two identical subunits



- Each subunit either open or closed
- channel has 3 states: $S_{0}, S_{1}, S_{2}$ ( $i=\#$ open subunits)
- Subunits open, close randomly with rates $\alpha, \beta$


## Ion channel with two identical subunits



- Each subunit either open or closed
- channel has 3 states: $S_{0}, S_{1}, S_{2}$ ( $i=\#$ open subunits)
- Subunits open, close randomly with rates $\alpha, \beta$



## Master equation for jump process



$$
S_{0} \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} S_{1} \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} S_{2}
$$

- Let $\mathbf{p}(t)=\left(p_{0}(t), p_{1}(t), p_{2}(t)\right)^{T}$ be probability distribution for $X(t)$
- $p_{i}(t)=\operatorname{Prob}\left\{X(t)=S_{i}\right\}$


## Master equation for jump process



$$
S_{0} \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} S_{1} \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} S_{2}
$$

- Let $\mathbf{p}(t)=\left(p_{0}(t), p_{1}(t), p_{2}(t)\right)^{T}$ be probability distribution for $X(t)$
- $p_{i}(t)=\operatorname{Prob}\left\{X(t)=S_{i}\right\}$

Master equation: $\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}-2 \alpha & \beta & 0 \\ 2 \alpha & -\alpha-\beta & 2 \beta \\ 0 & \alpha & -2 \beta\end{array}\right]\left[\begin{array}{l}p_{0} \\ p_{1} \\ p_{2}\end{array}\right]$

## Behavior of solutions of autonomous master equation

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right] \\
& \alpha=\beta=1 \\
& \alpha=10, \beta=1
\end{aligned}
$$

## Behavior of solutions of autonomous master equation

$$
\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]
$$

$$
\alpha=1, \beta=0
$$

$$
\alpha=0, \beta=1
$$




## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

$A$ is splitting if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that
$A$ is splitting if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

- All $\mathbb{W}$-matrices have eigenvalue $\lambda_{1}=0$


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

$A$ is splitting if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

- All $\mathbb{W}$-matrices have eigenvalue $\lambda_{1}=0$
- All other eigenvalues either zero or have negative real part


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

$A$ is splitting if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

- All $\mathbb{W}$-matrices have eigenvalue $\lambda_{1}=0$
- All other eigenvalues either zero or have negative real part
- Zero is repeated eigenvalue iff $\mathbb{W}$-matrix is decomposable or splitting


## van Kampen's theorem for autonomous master equations

Theorem
Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

Proof.

## van Kampen's theorem for autonomous master equations

Theorem
Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

Proof.

- Let $\lambda_{1}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that $0=\lambda_{1} \geq \Re\left(\lambda_{2}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)$


## van Kampen's theorem for autonomous master equations

Theorem
Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{1}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that $0=\lambda_{1} \geq \Re\left(\lambda_{2}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)$
- $\Re\left(\lambda_{i}\right)<0$ for $2 \leq i \leq n$ since $A$ is neither decomposable nor splitting


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{1}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{1} \geq \Re\left(\lambda_{2}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

- $\Re\left(\lambda_{i}\right)<0$ for $2 \leq i \leq n$ since $A$ is neither decomposable nor splitting
- Every probability distribution solution $\mathbf{p}$ of master equation is of form

$$
\mathbf{p}(t)=\mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $\mathbf{v}_{i}$ 's are corresponding eigenvectors and $c_{i}$ 's are polynomials in $t$ of degree $<n$

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{1}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{1} \geq \Re\left(\lambda_{2}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

- $\Re\left(\lambda_{i}\right)<0$ for $2 \leq i \leq n$ since $A$ is neither decomposable nor splitting
- Every probability distribution solution $\mathbf{p}$ of master equation is of form

$$
\mathbf{p}(t)=\mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $\mathbf{v}_{i}$ 's are corresponding eigenvectors and $c_{i}$ 's are polynomials in $t$ of degree $<n$

- Therefore, $\mathbf{p}(t) \rightarrow \mathbf{v}_{1}$ independent of initial conditions


## Nonautonomous master equation



- Ion channel kinetics are dependent on external factors such as membrane voltage $\Rightarrow \alpha, \beta$ are functions of time!


## Nonautonomous master equation



$$
S_{0} \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} S_{1} \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} S_{2}
$$

- Ion channel kinetics are dependent on external factors such as membrane voltage $\Rightarrow \alpha, \beta$ are functions of time!
- How will solutions behave now?


## Behavior of solutions of nonautonomous master equation

$$
\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]
$$

$\alpha=|\sin (t)|, \beta=|\cos (t)|$
$\alpha=|\tan (t)|, \beta=t$


## Behavior of solutions of nonautonomous master equation

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right] \\
& \alpha=\beta=(t+1)^{-1} \\
& \alpha=\beta=\exp (-2 t)
\end{aligned}
$$

## What causes solutions to approach each other?

- As in autonomous case, for each $t \geq 0$
- 0 is a simple eigenvalue of $A(t)$
- other eigenvalues of $A(t)$ have negative real part


## What causes solutions to approach each other?

- As in autonomous case, for each $t \geq 0$
- 0 is a simple eigenvalue of $A(t)$
- other eigenvalues of $A(t)$ have negative real part
- Eigenstructure is often misleading for nonautonomous ODEs!


## What causes solutions to approach each other?

- As in autonomous case, for each $t \geq 0$
- 0 is a simple eigenvalue of $A(t)$
- other eigenvalues of $A(t)$ have negative real part
- Eigenstructure is often misleading for nonautonomous ODEs!

Example:

$$
\begin{aligned}
& a_{11}(t)=-1-9 \cos ^{2}(6 t)+12 \sin (6 t) \cos (6 t) \\
& a_{12}(t)=12 \cos ^{2}(6 t)+9 \sin (6 t) \cos (6 t) \\
& a_{21}(t)=-12 \sin ^{2}(6 t)+9 \sin (t) \cos (6 t) \\
& a_{22}(t)=-1-9 \sin ^{2}(6 t)-12 \sin (6 t) \cos (6 t)
\end{aligned}
$$

$A(t)=\left[a_{i j}(t)\right]$ has eigenvalues -1 and -10 for all $t \geq 0$, yet

$$
\mathbf{x}(t)=e^{2 t}\left[\begin{array}{l}
2 \sin (6 t)+\cos (6 t) \\
2 \cos (6 t)-\sin (6 t)
\end{array}\right]+2 e^{-13 t}\left[\begin{array}{l}
2 \cos (6 t)-\sin (6 t) \\
2 \sin (6 t)-\cos (6 t)
\end{array}\right]
$$

is a solution of $\dot{\mathbf{x}}=A(t) \mathbf{x}$

## Current theory

If the transition rates vary according to specific functions of time, the concentration of each subunit state approaches to a specific function of time (in comparison to a constant value when transition rates are constant) regardless of the initial concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)

## $\mathcal{L}^{1}$-norm as Lyapunov function for $\mathrm{H}_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $\mathrm{H}_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $\mathrm{H}_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- If $\mathbf{p}(t)$ and $\mathbf{q}(t)$ are probability distribution solutions of master equation, then $\mathbf{x}(t)=\mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- If $\mathbf{p}(t)$ and $\mathbf{q}(t)$ are probability distribution solutions of master equation, then $\mathbf{x}(t)=\mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=- & \sum_{i \in[n] \backslash I_{+}}
\end{aligned} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|,
$$

## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- If $\mathbf{p}(t)$ and $\mathbf{q}(t)$ are probability distribution solutions of master equation, then $\mathbf{x}(t)=\mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=-\sum_{i \in[n] \backslash I_{+}} & \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right| \\
& -\sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in I_{+}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|
\end{aligned}
$$

- $I_{+}, I_{-}$contain positive, negative indices of $\mathbf{x}(t)$, hence $\frac{d\|\mathbf{x}(t)\|_{1}}{d t} \leq 0$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- If $\mathbf{p}(t)$ and $\mathbf{q}(t)$ are probability distribution solutions of master equation, then $\mathbf{x}(t)=\mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=- & \sum_{i \in[n] \backslash I_{+}}
\end{aligned} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|,
$$

- $I_{+}, I_{-}$contain positive, negative indices of $\mathbf{x}(t)$, hence $\frac{d\|\mathbf{x}(t)\|_{1}}{d t} \leq 0$
- If $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=0$ then $A(t)$ is decomposable or splitting $\left(\Rightarrow \lambda_{2}(t)=0\right)$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- If $\mathbf{p}(t)$ and $\mathbf{q}(t)$ are probability distribution solutions of master equation, then $\mathbf{x}(t)=\mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=- & \sum_{i \in[n] \backslash I_{+}}
\end{aligned} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|,
$$

- $I_{+}, I_{-}$contain positive, negative indices of $\mathbf{x}(t)$, hence $\frac{d\|\mathbf{x}(t)\|_{1}}{d t} \leq 0$
- If $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=0$ then $A(t)$ is decomposable or splitting $\left(\Rightarrow \lambda_{2}(t)=0\right)$
- Converse: if $\Re\left(\lambda_{2}(t)\right)<0$ then $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}<0$


## Conjecture

$$
\begin{equation*}
\text { Master equation: } \frac{d \mathbf{p}}{d t}=A(t) \mathbf{p} \tag{1}
\end{equation*}
$$

## Conjecture

Let $A: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n \times n}$ be a continuous, $\mathbb{W}$-matrix-valued function, and let $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ be an ordering of the $n$ eigenvalues of $A(t)$, counting multiplicities, such that $0=\lambda_{1}(t) \geq \Re\left(\lambda_{2}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)$ for all $t \geq 0$. If $\Re\left(\lambda_{2}\right)$ is not integrable, then all probability distribution solutions of (1) are globally asymptotically stable (GAS); i.e., given any two probability distribution solutions $\mathbf{p}$ and $\mathbf{q}$ of (1),

$$
\mathbf{p}(t)-\mathbf{q}(t) \rightarrow \mathbf{0} \text { as } t \rightarrow \infty
$$

## Conjecture

$$
\begin{equation*}
\text { Master equation: } \quad \frac{d \mathbf{p}}{d t}=A(t) \mathbf{p} \tag{1}
\end{equation*}
$$

## Conjecture

Let $A: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n \times n}$ be a continuous, $\mathbb{W}$-matrix-valued function, and let $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ be an ordering of the $n$ eigenvalues of $A(t)$, counting multiplicities, such that $0=\lambda_{1}(t) \geq \Re\left(\lambda_{2}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)$ for all $t \geq 0$. If $\Re\left(\lambda_{2}\right)$ is not integrable, then all probability distribution solutions of (1) are globally asymptotically stable (GAS); i.e., given any two probability distribution solutions $\mathbf{p}$ and $\mathbf{q}$ of (1),

$$
\mathbf{p}(t)-\mathbf{q}(t) \rightarrow \mathbf{0} \text { as } t \rightarrow \infty
$$

- If $\Re\left(\lambda_{2}(t)\right)<0$ then $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}<0$ for any $H_{0}$-solution $\mathbf{x}(t)$
- The nonintegrability of $\Re\left(\lambda_{2}\right)$ "should" ensure that $\|\mathbf{x}(t)\|_{1} \rightarrow 0$


## First generalization of van Kampen's theorem

- van Kampen's theorem is special case of conjecture
- $\lambda_{2}(t)<0$ is constant, so not integrable
- all probability distribution solutions approach $\mathbf{v}_{1}$


## First generalization of van Kampen's theorem

- van Kampen's theorem is special case of conjecture
- $\lambda_{2}(t)<0$ is constant, so not integrable
- all probability distribution solutions approach $\mathbf{v}_{1}$
- Theorem can be extended slightly using similar proof

Theorem
Suppose $A(t)=f(t) M$ for all $t \geq 0$, where $M$ is constant $\mathbb{W}$-matrix and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Then probability distribution solutions of the master equation are GAS if and only if $M$ is neither decomposable nor splitting and $f$ is not integrable.

## Example of first generalization

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=A \mathbf{p}=f(t)\left[\begin{array}{ccc}
-2 & 1 & 0 \\
2 & -2 & 2 \\
0 & 1 & -2
\end{array}\right] \mathbf{p} \\
& f(t)=(t+1)^{-1} \\
& f(t)=\exp (-2 t)
\end{aligned}
$$

## Generalization of van Kampen's theorem for asymptotically periodic $A$

## Theorem

If $A$ is continuous, $\mathbb{W}$-matrix-valued and there exists a continuous, periodic, $\mathbb{W}$-matrix-valued function $B$ whose $\omega$-limit set contains at least one matrix that is neither decomposable nor splitting such that

$$
\lim _{t \rightarrow \infty}\|A(t)-B(t)\|_{1}=0
$$

then probability distribution solutions of the master equation are GAS.

## Generalization of van Kampen's theorem for asymptotically periodic $A$

## Theorem

If $A$ is continuous, $\mathbb{W}$-matrix-valued and there exists a continuous, periodic, $\mathbb{W}$-matrix-valued function $B$ whose $\omega$-limit set contains at least one matrix that is neither decomposable nor splitting such that

$$
\lim _{t \rightarrow \infty}\|A(t)-B(t)\|_{1}=0
$$

then probability distribution solutions of the master equation are GAS.

- Idea: $\mathcal{L}^{1}$-norm must decrease by some uniform amount during each period of $B$.


## Generalization of van Kampen's theorem for asymptotically periodic $A$

## Theorem

If $A$ is continuous, $\mathbb{W}$-matrix-valued and there exists a continuous, periodic, $\mathbb{W}$-matrix-valued function $B$ whose $\omega$-limit set contains at least one matrix that is neither decomposable nor splitting such that

$$
\lim _{t \rightarrow \infty}\|A(t)-B(t)\|_{1}=0
$$

then probability distribution solutions of the master equation are GAS.

- Idea: $\mathcal{L}^{1}$-norm must decrease by some uniform amount during each period of $B$.
- Special case of conjecture since $\lambda_{2}$ asymptotically approaches a nonpositive periodic function which is negative at least once during each period.


## Another generalization of van Kampen's theorem


#### Abstract

Theorem If $A$ is differentiable, W-matrix-valued function such that both $A$ and its derivative are bounded, and the $\omega$-limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.


## Another generalization of van Kampen's theorem

Theorem
If $A$ is differentiable, W-matrix-valued function such that both $A$ and its derivative are bounded, and the $\omega$-limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

- Idea: if $\|\mathbf{x}(t)\|_{1} \rightarrow r>0$, then $\omega(A)$ contains a decomposable or splitting matrix


## Another generalization of van Kampen's theorem

## Theorem

If $A$ is differentiable, W-matrix-valued function such that both $A$ and its derivative are bounded, and the $\omega$-limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

- Idea: if $\|\mathbf{x}(t)\|_{1} \rightarrow r>0$, then $\omega(A)$ contains a decomposable or splitting matrix
- Special case of conjecture since
- $\omega\left(\lambda_{2}\right)$ is nonempty and contains negative number
- $\lambda_{2}^{\prime}(t)$ is bounded
$\lambda_{2}(t)=0$ for all $t \geq 0$ but solutions are GAS

$$
A(t)=\left\{\begin{array}{ll}
A_{1}, & t \in[0,1), \\
A_{2}, & t \in[1,2),
\end{array} \quad A_{1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right]\right.
$$






## Thank you!

Thanks to

- Jim Keener
- NSF-IGERT for funding

National Science Foundation
WHEREDISCOVERIES BEGIN

