KORK ERKER KEN (B)

Diffusion-trapping model of AMPA receptor trafficking along a spiny dendrite

Paul C. Bressloff, Berton A. Earnshaw

Department of Mathematics, University of Utah Salt Lake City, Utah, USA

August 4, 2008

Synapses can "learn"

Collingridge et al., Nat. Rev. Neurosci. (2004)

イロト イ部 ドイ君 ドイ君ド

 299

Þ

Synapses "learn" by regulating AMPA receptor numbers

Scannevin [& H](#page-1-0)u[gan](#page-3-0)[ir,](#page-1-0) Nat. Rev. Neurosci. [\(20](#page-0-0)[00\)](#page-26-0)

Synapses located in dendritic spines

[M](#page-0-0)[at](#page-1-0)[us](#page-7-0)[,](#page-8-0) Science [\(20](#page-0-0)[00\)](#page-26-0)
 \iff \iff \iff \iff \iff \iff \iff \iff

 299

目

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. & \rightarrow & \end{array}$

Þ

 $2Q$

AMPA receptor trafficking at spines

- **•** constitutively recycled with intracellular stores • turned over in 10-30 mins (or 16 hrs?)
- immobilized by scaffolding proteins in synapse
- **o diffuse** laterally within membrane

Model of AMPAR trafficking at a single spine

- **P, Q: unbound, bound receptor concentrations in PSD**
- **R, U: free receptor concentrations in spine head, dendrite**
- **C: number of intracellular receptors**
- **k,** σEXO**: rates of endocytosis, exocytosis**
- σDEG, δ**: rates of degradation, intracellular delivery**
- **h**, µ: **hopping rates across boundary of PSD, spine neck**
- α**(Z-Q): rate of binding to scaffolding (Z = scaffolding concentration)**
- β**: rate of unbinding from scaffolding**

AMPARs diffuse laterally between synapses

Triller & Choquet, Nat. Rev. Neurosci. (2003)

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

 $2Q$

Þ

Long-range transport of AMPARs along spiny dendrite

- motor transport along microtubules
- **• diffusion** within dendritic membrane? (Adesnik et al., 2005)

Continuum model of 1D nonbranching dendrite

If spines are sufficiently dense, treat them as density ρ

$$
\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial x^2} - \rho(x)\mu(x)(U - R)
$$

- \bullet $U =$ concentration of AMPARs in dendrite
- $R =$ concentration of AMPARs in spine
- \bullet μ = hopping rate between dendrite and spine

Continuum model of 1D nonbranching dendrite

If spines are sufficiently dense, treat them as density ρ

$$
\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial x^2} - \rho(x)\mu(x)(U - R)
$$

- \bullet $U =$ concentration of AMPARs in dendrite
- $R =$ concentration of AMPARs in spine
- \bullet μ = hopping rate between dendrite and spine
- Boundary conditions

$$
-D\left.\frac{\partial U}{\partial x}\right|_{x=0} = J_{\text{soma}}, \quad \left.\frac{\partial U}{\partial x}\right|_{x=L} = 0.
$$

[AMPAR trafficking at spines](#page-1-0) [1D Model](#page-8-0) [Steady-state behavior](#page-10-0) [Time-dependent behavior](#page-18-0)

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Steady-state solution: "cable" equation

 \bullet If all parameters are x-independent, then get "cable" equation for AMPAR trafficking

$$
\frac{d^2U}{dx^2} - \Lambda^2 U = -\Lambda^2 \widehat{R}
$$

 $Λ^{-1} = \sqrt{\frac{D}{\rho_0^2}}$ $\frac{D}{\rho\widehat{\mu}}$: length-scale of diffusive coupling $\widehat{R}, \widehat{\mu}$: effective AMPAR spine concentration, hopping rate [AMPAR trafficking at spines](#page-1-0) [1D Model](#page-8-0) [Steady-state behavior](#page-10-0) [Time-dependent behavior](#page-18-0)

Steady-state solution: "cable" equation

 \bullet If all parameters are x-independent, then get "cable" equation for AMPAR trafficking

$$
\frac{d^2U}{dx^2} - \Lambda^2 U = -\Lambda^2 \widehat{R}
$$

 $Λ^{-1} = \sqrt{\frac{D}{\rho_0^2}}$ $\frac{D}{\rho\widehat{\mu}}$: length-scale of diffusive coupling $\hat{\mathsf{R}}, \hat{\mu}$: effective AMPAR spine concentration, hopping rate • Solve using Green's function methods

$$
U(x) = \frac{J_{\text{soma}}}{D} \frac{\cosh(\Lambda(x-L))}{\Lambda \sinh(\Lambda L)} + \widehat{R}
$$

 2990

Steady-state AMPAR profiles for identical spines

- 1,000 identical spines uniformly spaced in 1 mm dendrite
- **Two sources of AMPARs**
	- at soma
	- local intracellular delivery
- diffusion coefficient $D=0.1\;\mu m^2 s^{-1}$ in dendrite

Nonidentical spines: Synaptic democracy

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right\} & \rightarrow & \left\{ \begin{array}{ccc} \Xi & \rightarrow & \leftarrow \end{array} \right. \end{array} \right.$ Þ $2Q$

Identical spines without intracellular delivery

Intensive vs. extensive parameters

• Trafficking parameters categorized into two groups: Do local changes in parameter produce nonlocal changes in steady-state synaptic AMPAR numbers?

Intensive

(local effect only)

- PSD surface area a
- \bullet scaffolding concentration Z
- binding rate α
- unbinding rate β

Extensive

(nonlocal effect)

- rate of exocytosis σ^EXO
- \bullet rate of endocytosis k
- intracellular delivery rate δ

ADD YEARS ARA YOUR

- degradation rate σ^DEG
- Spine neck hopping rate Ω can be extensive, but not in current parameter regime $(\sigma^\mathrm{EXO} \gg \sigma^\mathrm{DEG})$

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right\} & \rightarrow & \left\{ \begin{array}{ccc} \Xi & \rightarrow & \leftarrow \end{array} \right. \end{array} \right.$

 \equiv

 2990

Heterosynaptic dependence on constitutive recycling

Globally scaling exo/endocytosis does not imply multiplicative scaling of synaptic AMPAR numbers

- True if spine properties vary along dendrite
- E.g., identical spines except scaffolding concentration is

$$
Z(x) = 100[2 + \sin(x/10)] \mu m^{-2}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 19 Q Q ^

Steady-state is nice... ...but what about time-dependent phenomena?

AMPA receptor recycling via thrombin cleavage

Passafaro et al., Nat. Neurosci. (2001)

イロン イ部ン イ君ン イ君ン

 \Rightarrow

 299

AMPA receptor recycling via photoinactivation

Adesnik et al., Neuron (2005)

 \equiv

 299

イロメ イ部メ イミメ イモメ

イロト イ部 ドイ君 ドイ君ド

 $2Q$

Þ

Fast or slow recycling of AMPA receptors?

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

 $2Q$

Simulation of photoinactivation of AMPA receptors

- Source at soma, but no intracellular delivery
- In steady-state for $t < 0$
- At $t = 0$ all surface AMPA receptors instantaneously "inactivated"

 $2Q$

Simulation of photoinactivation of AMPA receptors

- Source at soma, but no intracellular delivery
- In steady-state for $t < 0$
- At $t = 0$ all surface AMPA receptors instantaneously "inactivated"

• Rates of exo/endocytosis are fast (10-30 mins)

イロメ イ部メ イミメ イモメ

目

Rate of recycling depends on distance from soma

• Fast exo/endocytosis consistent with slow recycling

Rate of recycling depends on distance from soma

- Fast exo/endocytosis consistent with slow recycling
- There are many time scales!

Conclusions

- **1** Source of AMPARs at soma implies
	- exponential decay for identical spines
	- synaptic democracy for nonidentical spines
- ² Need fast lateral diffusion to deliver AMPARs to distal synapses from soma (takes too long?)
- ³ Local changes in constitutive recycling produce nonlocal changes in synaptic AMPAR numbers
- ⁴ Globally scaling exo/endocytosis does not multiplicatively scale synaptic AMPAR numbers in nonidentical spines
- **5** Constitutive recycling rate is distance-dependent when soma is only source of AMPARs
- ⁶ Many time scales involved in relaxation to steady-state