# Global asymptotic stability of solutions of nonautonomous master equations

Berton Earnshaw James Keener

Department of Mathematics Michigan State University

Department of Mathematics University of Utah

October 8, 2009







• Let  $X : \mathbb{R}_+ \to \{x_0, \dots, x_n\}$  be finite-state jump process



- Let  $X : \mathbb{R}_+ \to \{x_0, \dots, x_n\}$  be finite-state jump process
- Assuming X is a Markov process, the transition probabilities

$$p(i,t|j,s) = \text{Prob}\{X(t) = x_i \mid X(s) = x_j\} \quad (t \ge s \ge 0)$$

satisfy the Chapman-Kolmogorov equations

$$p(i,t|j,s) = \sum_{k=1}^{n} p(i,t|k,u)p(k,u|j,s) \quad (t \ge u \ge s).$$

- Let  $X: \mathbb{R}_+ \to \{x_0, \dots, x_n\}$  be finite-state jump process
- Assuming X is a Markov process, the transition probabilities

$$p(i,t|j,s) = \text{Prob}\{X(t) = x_i \mid X(s) = x_j\} \quad (t \ge s \ge 0)$$

satisfy the Chapman-Kolmogorov equations

$$p(i,t|j,s) = \sum_{k=1}^{n} p(i,t|k,u)p(k,u|j,s) \quad (t \ge u \ge s).$$

Assuming transition probabilities are of the form

$$p(i, t + \Delta t | x_j, t) = \delta_{ij} + a_{ij}(t)\Delta t + o(\Delta t) \quad (t \ge 0)$$
  
 $a_{ij}$  right-continuous,  $a_{ij} \ge 0 \ (i \ne j), \quad a_{jj} = -\sum_{i \ne j} a_{ij}$ 

- Let  $X : \mathbb{R}_+ \to \{x_0, \dots, x_n\}$  be finite-state jump process
- Assuming X is a Markov process, the transition probabilities

$$p(i,t|j,s) = \text{Prob}\{X(t) = x_i \mid X(s) = x_j\} \quad (t \ge s \ge 0)$$

satisfy the Chapman-Kolmogorov equations

$$p(i,t|j,s) = \sum_{k=1}^{n} p(i,t|k,u)p(k,u|j,s) \quad (t \ge u \ge s).$$

Assuming transition probabilities are of the form

$$p(i, t + \Delta t | x_j, t) = \delta_{ij} + a_{ij}(t)\Delta t + o(\Delta t) \quad (t \ge 0)$$
  
 $a_{ij}$  right-continuous,  $a_{ij} \ge 0 \ (i \ne j), \quad a_{jj} = -\sum_{i \ne j} a_{ij}$ 

one derives master equation from CKE in the limit  $\Delta t \rightarrow 0$ :

$$\frac{d\mathbf{p}_i}{dt} = A(t)\mathbf{p}_i$$

$$A(t) = (a_{ij}(t)), \quad \mathbf{p}_i = (p_{i0}, \dots, p_{in})^T, \quad p_{ij}(t) = p(i, t|j, 0)$$



- Let  $X : \mathbb{R}_+ \to \{x_0, \dots, x_n\}$  be finite-state jump process
- Assuming X is a Markov process, the transition probabilities

$$p(i,t|j,s) = \text{Prob}\{X(t) = x_i \mid X(s) = x_j\} \quad (t \ge s \ge 0)$$

satisfy the Chapman-Kolmogorov equations

$$p(i,t|j,s) = \sum_{k=1}^{n} p(i,t|k,u)p(k,u|j,s) \quad (t \ge u \ge s).$$

Assuming transition probabilities are of the form

$$p(i, t + \Delta t | x_j, t) = \delta_{ij} + a_{ij}(t)\Delta t + o(\Delta t) \quad (t \ge 0)$$
  
 $a_{ij}$  right-continuous,  $a_{ij} \ge 0 \ (i \ne j), \quad a_{ij} = -\sum_{i \ne j} a_{ij}$ 

one derives master equation from CKE in the limit  $\Delta t \rightarrow 0$ :

$$\frac{d\mathbf{p}_i}{dt} = A(t)\mathbf{p}_i$$

$$A(t) = (a_{ij}(t)), \quad \mathbf{p}_i = (p_{i0}, \dots, p_{in})^T, \quad p_{ij}(t) = p(i, t|j, 0)$$

• Matrices like A(t) called  $\mathbb{W}$ -matrices [van Kampen]





• Each subunit has two states: open or closed



- Each subunit has two states: open or closed
- Channel has 3 states:  $x_0$ ,  $x_1$ ,  $x_2$  (i = # open subunits)



- Each subunit has two states: open or closed
- Channel has 3 states:  $x_0$ ,  $x_1$ ,  $x_2$  (i = # open subunits)
- Subunits open, close randomly with rates  $\alpha, \beta$



- Each subunit has two states: open or closed
- Channel has 3 states:  $x_0$ ,  $x_1$ ,  $x_2$  (i = # open subunits)
- Subunits open, close randomly with rates  $\alpha, \beta$

State diagram: 
$$x_0 \stackrel{2\alpha}{\underset{\beta}{\longrightarrow}} x_1 \stackrel{\alpha}{\underset{2\beta}{\longrightarrow}} x_2$$



# Master equation for ion channel kinetics



$$x_0 \underset{\beta}{\overset{2\alpha}{\longmapsto}} x_1 \underset{2\beta}{\overset{\alpha}{\longmapsto}} x_2$$

•  $\mathbf{p}(t) = (p_0(t), p_1(t), p_2(t))^T$  = probability distribution for X(t) $p_i(t) = \text{Prob}\{X(t) = x_i \mid \mathbf{p}(0)\}$ 

# Master equation for ion channel kinetics



$$x_0 \underset{\beta}{\overset{2\alpha}{\longmapsto}} x_1 \underset{2\beta}{\overset{\alpha}{\longmapsto}} x_2$$

•  $\mathbf{p}(t) = (p_0(t), p_1(t), p_2(t))^T$  = probability distribution for X(t) $p_i(t) = \text{Prob}\{X(t) = x_i \mid \mathbf{p}(0)\}\$ 

Master equation:  $\frac{d\mathbf{p}}{dt} = A\mathbf{p} = \begin{bmatrix} -2\alpha & \beta & 0 \\ 2\alpha & -\alpha - \beta & 2\beta \\ 0 & \alpha & -2\beta \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \end{bmatrix}$ 

### Behavior of solutions of autonomous master equation

$$\frac{d\mathbf{p}}{dt} = A\mathbf{p} = \begin{bmatrix} -2\alpha & \beta & 0\\ 2\alpha & -\alpha - \beta & 2\beta\\ 0 & \alpha & -2\beta \end{bmatrix} \begin{bmatrix} p_0\\ p_1\\ p_2 \end{bmatrix}$$

$$\alpha = \beta = 1$$



$$\alpha = 10$$
,  $\beta = 1$ 



### Behavior of solutions of autonomous master equation

$$\frac{d\mathbf{p}}{dt} = A\mathbf{p} = \begin{bmatrix} -2\alpha & \beta & 0\\ 2\alpha & -\alpha - \beta & 2\beta\\ 0 & \alpha & -2\beta \end{bmatrix} \begin{bmatrix} p_0\\ p_1\\ p_2 \end{bmatrix}$$

$$\alpha = 1$$
,  $\beta = 0$ 



$$\alpha = 0$$
,  $\beta = 1$ 



#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

A is *decomposable* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

A is *splitting* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ 0 & 0 & A_3 \end{bmatrix}$$

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

A is *decomposable* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

For all W-matrices,

A is *splitting* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ 0 & 0 & A_3 \end{bmatrix}$$

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

A is *decomposable* if there exists permutation matrix P such that

A is *splitting* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ 0 & 0 & A_3 \end{bmatrix}$$

For all W-matrices,

All columns sum to zero ⇒ zero is eigenvalue

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

A is *decomposable* if there exists permutation matrix P such that

A is *splitting* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ 0 & 0 & A_3 \end{bmatrix}$$

For all W-matrices,

- All columns sum to zero ⇒ zero is eigenvalue
- Other eigenvalues have negative real part

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

A is *decomposable* if there exists permutation matrix P such that

A is *splitting* if there exists permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ 0 & 0 & A_3 \end{bmatrix}$$

For all W-matrices,

- All columns sum to zero ⇒ zero is eigenvalue
- Other eigenvalues have negative real part
- Zero is repeated eigenvalue 
   ⇔ decomposable or splitting

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

Proof.

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

### Proof.

• Let  $\lambda_0, \ldots, \lambda_n$  be ordering of eigenvalues of A such that

$$0 = \lambda_0 \ge \Re(\lambda_1) \ge \cdots \ge \Re(\lambda_n)$$

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

### Proof.

• Let  $\lambda_0, \ldots, \lambda_n$  be ordering of eigenvalues of A such that

$$0 = \lambda_0 \ge \Re(\lambda_1) \ge \cdots \ge \Re(\lambda_n)$$

•  $\Re(\lambda_i) < 0$  for i = 1, ..., n since A is not decomposable, splitting

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

### Proof.

• Let  $\lambda_0, \ldots, \lambda_n$  be ordering of eigenvalues of A such that

$$0 = \lambda_0 \geq \Re(\lambda_1) \geq \cdots \geq \Re(\lambda_n)$$

- $\Re(\lambda_i) < 0$  for  $i = 1, \ldots, n$  since A is not decomposable, splitting
- ullet Every probability distribution solution ullet of master equation is of form

$$\mathbf{p}(t) = \mathbf{v}_0 + c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n$$

where  $\mathbf{v}_i$ 's are eigenvectors and  $c_i$ 's are polynomials in t

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

### Proof.

• Let  $\lambda_0, \ldots, \lambda_n$  be ordering of eigenvalues of A such that

$$0 = \lambda_0 \geq \Re(\lambda_1) \geq \cdots \geq \Re(\lambda_n)$$

- $\Re(\lambda_i) < 0$  for  $i = 1, \dots, n$  since A is not decomposable, splitting
- $\bullet$  Every probability distribution solution  $\mathbf{p}$  of master equation is of form

$$\mathbf{p}(t) = \mathbf{v}_0 + c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n$$

where  $\mathbf{v}_i$ 's are eigenvectors and  $c_i$ 's are polynomials in t

• Therefore,  $\mathbf{p}(t) \rightarrow \mathbf{v}_0$  independent of initial conditions

#### **Theorem**

Suppose A is a constant  $\mathbb{W}$ -matrix. If A is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

### Proof.

• Let  $\lambda_0, \ldots, \lambda_n$  be ordering of eigenvalues of A such that

$$0 = \lambda_0 \geq \Re(\lambda_1) \geq \cdots \geq \Re(\lambda_n)$$

- $\Re(\lambda_i) < 0$  for i = 1, ..., n since A is not decomposable, splitting
- ullet Every probability distribution solution ullet of master equation is of form

$$\mathbf{p}(t) = \mathbf{v}_0 + c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n$$

where  $\mathbf{v}_i$ 's are eigenvectors and  $c_i$ 's are polynomials in t

- Therefore,  $\mathbf{p}(t) \rightarrow \mathbf{v}_0$  independent of initial conditions
- Note: converse of theorem is also true

### Nonautonomous master equation



 Ion channel kinetics are dependent on external factors – e.g., membrane voltage and ligand concentration

### Nonautonomous master equation



- Ion channel kinetics are dependent on external factors e.g., membrane voltage and ligand concentration
- Open and close rates  $\alpha, \beta$  are functions of time!



### Nonautonomous master equation



- Ion channel kinetics are dependent on *external* factors e.g., membrane voltage and ligand concentration
- Open and close rates  $\alpha, \beta$  are functions of time!
  - How will solutions behave now?

### Behavior of solutions of nonautonomous master equation

$$\frac{d\mathbf{p}}{dt} = A\mathbf{p} = \begin{bmatrix} -2\alpha & \beta & 0\\ 2\alpha & -\alpha - \beta & 2\beta\\ 0 & \alpha & -2\beta \end{bmatrix} \begin{bmatrix} p_0\\ p_1\\ p_2 \end{bmatrix}$$

$$\alpha = \beta = (t+1)^{-1}$$

$$0.9$$

$$0.8$$

$$-p_0 - - - q_0$$

$$-p_1 - - - q_1$$

$$-p_2 - - - q_2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$





### Behavior of solutions of nonautonomous master equation

$$\frac{d\mathbf{p}}{dt} = A\mathbf{p} = \begin{bmatrix} -2\alpha & \beta & 0\\ 2\alpha & -\alpha - \beta & 2\beta\\ 0 & \alpha & -2\beta \end{bmatrix} \begin{bmatrix} p_0\\ p_1\\ p_2 \end{bmatrix}$$

$$\alpha = |\sin(t)|, \ \beta = |\cos(t)|$$



$$\alpha = |\sin(te^{-1/t})|, \ \beta = |\cos(te^{-1/t})|$$



### Behavior of solutions of nonautonomous master equation

$$\frac{d\mathbf{p}}{dt} = A\mathbf{p} = \begin{bmatrix} -2\alpha & \beta & 0\\ 2\alpha & -\alpha - \beta & 2\beta\\ 0 & \alpha & -2\beta \end{bmatrix} \begin{bmatrix} p_0\\ p_1\\ p_2 \end{bmatrix}$$

$$\alpha = \Theta(\sin(\pi t)), \ \beta = \Theta(\cos(\pi t))$$



$$\alpha = \sin(2\tan^{-1}(100t)),$$
  
 $\beta = \cos(\tan^{-1}(100t))$ 



### What causes solutions to approach each other?

### **Current theory**

If the transition rates vary according to specific functions of time, the concentration of each subunit state approaches to a specific function of time (in comparison to a constant value when transition rates are constant) regardless of the initial concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)



# What causes solutions to approach each other?

- As in autonomous case, for each  $t \ge 0$ 
  - 0 is a simple eigenvalue of A(t)
  - other eigenvalues of A(t) have negative real part

### What causes solutions to approach each other?

- As in autonomous case, for each  $t \ge 0$ 
  - 0 is a simple eigenvalue of A(t)
  - other eigenvalues of A(t) have negative real part
- Eigenstructure can be misleading for nonautonomous ODEs!

## What causes solutions to approach each other?

- As in autonomous case, for each t > 0
  - 0 is a simple eigenvalue of A(t)
  - other eigenvalues of A(t) have negative real part
- Eigenstructure can be misleading for nonautonomous ODEs!

$$a_{11}(t) = -1 - 9\cos^2(6t) + 12\sin(6t)\cos(6t)$$

$$a_{12}(t) = 12\cos^2(6t) + 9\sin(6t)\cos(6t)$$

$$a_{21}(t) = -12\sin^2(6t) + 9\sin(6t)\cos(6t)$$

$$a_{22}(t) = -1 - 9\sin^2(6t) - 12\sin(6t)\cos(6t)$$

$$A(t)=(a_{ij}(t))$$
 has eigenvalues  $-1$  and  $-10$  for all  $t\geq 0$ , yet

$$\mathbf{x}(t) = e^{2t} \begin{bmatrix} 2\sin(6t) + \cos(6t) \\ 2\cos(6t) - \sin(6t) \end{bmatrix} + 2e^{-13t} \begin{bmatrix} 2\cos(6t) - \sin(6t) \\ 2\sin(6t) - \cos(6t) \end{bmatrix}$$

is a solution of  $\dot{\mathbf{x}} = A(t)\mathbf{x}$ 

• Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$ 



- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$

- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$ 
  - $H_0$  is invariant manifold of master equation



- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$ 
  - $H_0$  is invariant manifold of master equation
  - $\mathbf{p}(t), \mathbf{q}(t)$  probability distribution solutions  $\Rightarrow \mathbf{p}(t) \mathbf{q}(t) \in H_0$

- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$ 
  - H<sub>0</sub> is invariant manifold of master equation
  - $\mathbf{p}(t), \mathbf{q}(t)$  probability distribution solutions  $\Rightarrow \mathbf{p}(t) \mathbf{q}(t) \in H_0$
- If  $\mathbf{x}(t)$  is any  $H_0$ -solution, then for a.e. t:

$$\frac{d||\mathbf{x}(t)||_{1}}{dt} = -\sum_{i \in [n] \setminus I_{+}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in [n] \setminus I_{-}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)| - \sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in I_{+}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)|$$

- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$ 
  - H<sub>0</sub> is invariant manifold of master equation
  - $\mathbf{p}(t), \mathbf{q}(t)$  probability distribution solutions  $\Rightarrow \mathbf{p}(t) \mathbf{q}(t) \in H_0$
- If  $\mathbf{x}(t)$  is any  $H_0$ -solution, then for a.e. t:

$$\frac{d||\mathbf{x}(t)||_{1}}{dt} = -\sum_{i \in [n] \setminus I_{+}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in [n] \setminus I_{-}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)| - \sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in I_{+}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)|$$

•  $I_+, I_-$  contain positive, negative indices of  $\mathbf{x}(t)$ , hence  $\frac{d||\mathbf{x}(t)||_1}{dt} < 0$ 

- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$ 
  - H<sub>0</sub> is invariant manifold of master equation
  - $\mathbf{p}(t), \mathbf{q}(t)$  probability distribution solutions  $\Rightarrow \mathbf{p}(t) \mathbf{q}(t) \in H_0$
- If  $\mathbf{x}(t)$  is any  $H_0$ -solution, then for a.e. t:

$$\frac{d||\mathbf{x}(t)||_{1}}{dt} = -\sum_{i \in [n] \setminus I_{+}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in [n] \setminus I_{-}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)| - \sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in I_{+}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)|$$

- $I_+, I_-$  contain positive, negative indices of  $\mathbf{x}(t)$ , hence  $\frac{d||\mathbf{x}(t)||_1}{dt} \leq 0$
- If  $\frac{d||\mathbf{x}(t)||_1}{dt} = 0$  then A(t) is decomposable or splitting  $(\Rightarrow \lambda_1(t) = 0)$

- Recall  $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- Define  $H_0 = \{ \mathbf{x} \mid \sum_{i=1}^n x_i = 0 \}$ 
  - $H_0$  is invariant manifold of master equation
  - $\mathbf{p}(t), \mathbf{q}(t)$  probability distribution solutions  $\Rightarrow \mathbf{p}(t) \mathbf{q}(t) \in H_0$
- If  $\mathbf{x}(t)$  is any  $H_0$ -solution, then for a.e. t:

$$\frac{d||\mathbf{x}(t)||_{1}}{dt} = -\sum_{i \in [n] \setminus I_{+}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in [n] \setminus I_{-}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)| - \sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{ij}(t) x_{j}(t) - \sum_{i \in I_{+}} \sum_{j \in I_{-}} a_{ij}(t) |x_{j}(t)|$$

- $I_+, I_-$  contain positive, negative indices of  $\mathbf{x}(t)$ , hence  $\frac{d||\mathbf{x}(t)||_1}{dt} \leq 0$
- If  $\frac{d||\mathbf{x}(t)||_1}{dt} = 0$  then A(t) is decomposable or splitting  $(\Rightarrow \lambda_1(t) = 0)$
- Contrapositive: if  $\Re(\lambda_1(t)) < 0$  then  $\frac{d||\mathbf{x}(t)||_1}{dt} < 0$



◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆○○○

#### **Theorem**

Suppose A(t) = f(t)M for all  $t \ge 0$ , where M is constant  $\mathbb{W}$ -matrix and  $f: \mathbb{R}_+ \to \mathbb{R}_+$  is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if M is neither decomposable nor splitting and f is not integrable.

#### **Theorem**

Suppose A(t) = f(t)M for all  $t \ge 0$ , where M is constant  $\mathbb{W}$ -matrix and  $f: \mathbb{R}_+ \to \mathbb{R}_+$  is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if M is neither decomposable nor splitting and f is not integrable.

Proof similar to van Kampen's theorem since FMS is

$$\Phi_0^t = \exp\left(\int_0^t A(t)\right) = \exp\left(F(t)M\right) \quad \left(F(t) = \int_0^t f(s) \, ds\right)$$

#### **Theorem**

Suppose A(t) = f(t)M for all  $t \ge 0$ , where M is constant  $\mathbb{W}$ -matrix and  $f: \mathbb{R}_+ \to \mathbb{R}_+$  is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if M is neither decomposable nor splitting and f is not integrable.

Proof similar to van Kampen's theorem since FMS is

$$\Phi_0^t = \exp\left(\int_0^t A(t)\right) = \exp\left(F(t)M\right) \quad \left(F(t) = \int_0^t f(s) \, ds\right)$$

Hence every probability distribution solution p is of form

$$\mathbf{p}(t) = \mathbf{v}_0 + c_1 e^{\mu_1 F(t)} \mathbf{v}_1 + \dots + c_n e^{\mu_n F(t)} \mathbf{v}_n$$

where  $\mu_i$ ,  $\mathbf{v}_i$  are eigenpairs of M and  $c_i$ 's are polynomials in F(t)

#### **Theorem**

Suppose A(t) = f(t)M for all  $t \ge 0$ , where M is constant  $\mathbb{W}$ -matrix and  $f: \mathbb{R}_+ \to \mathbb{R}_+$  is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if M is neither decomposable nor splitting and f is not integrable.

Proof similar to van Kampen's theorem since FMS is

$$\Phi_0^t = \exp\left(\int_0^t A(t)\right) = \exp\left(F(t)M\right) \quad \left(F(t) = \int_0^t f(s) \, ds\right)$$

Hence every probability distribution solution p is of form

$$\mathbf{p}(t) = \mathbf{v}_0 + c_1 e^{\mu_1 F(t)} \mathbf{v}_1 + \dots + c_n e^{\mu_n F(t)} \mathbf{v}_n$$

where  $\mu_i$ ,  $\mathbf{v}_i$  are eigenpairs of M and  $c_i$ 's are polynomials in F(t)

•  $\mathbf{p}(t) \rightarrow \mathbf{v}_0 \Leftrightarrow \Re(\mu_i) < 0 \text{ for } i = 1, \dots, n, \text{ and } F(t) \rightarrow \infty$ 

(ロ) (部) (目) (目) (目) (9) (○

## Extension for asymptotically periodic A

$$\alpha = \Theta(\sin(\pi t)), \ \beta = \Theta(\cos(\pi t)) \qquad \alpha = |\sin(te^{-1/t})|, \ \beta = |\cos(te^{-1/t})|$$

In both cases, A approaches a periodic matrix

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

## Extension for asymptotically periodic A

### **Definition**

The probability distribution solutions of a master equation are *globally* asymptotically stable (GAS) if for every pair of such solutions  $\mathbf{p}$ ,  $\mathbf{q}$ 

$$\mathbf{p}(t) - \mathbf{q}(t) \rightarrow \mathbf{0}$$
 as  $t \rightarrow \infty$ .

#### **Theorem**

Suppose A is a continuous,  $\mathbb{W}$ -matrix-valued function, and that there exists a continuous, periodic,  $\mathbb{W}$ -matrix-valued function B, whose  $\omega$ -limit set contains at least one matrix that is neither decomposable nor splitting, such that

$$\lim_{t\to\infty} ||A(t) - B(t)|| = 0.$$

Then the probability distribution solutions of the master equation are GAS.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

## Extension for asymptotically periodic A

### Definition

The probability distribution solutions of a master equation are *globally* asymptotically stable (GAS) if for every pair of such solutions  $\mathbf{p}$ ,  $\mathbf{q}$ 

$$\mathbf{p}(t) - \mathbf{q}(t) \rightarrow \mathbf{0}$$
 as  $t \rightarrow \infty$ .

#### **Theorem**

Suppose A is a continuous,  $\mathbb{W}$ -matrix-valued function, and that there exists a continuous, periodic,  $\mathbb{W}$ -matrix-valued function B, whose  $\omega$ -limit set contains at least one matrix that is neither decomposable nor splitting, such that

$$\lim_{t\to\infty} ||A(t) - B(t)|| = 0.$$

Then the probability distribution solutions of the master equation are GAS.

• Proof:  $\mathcal{L}^1$ -norm of  $H_0$ -solutions of  $\dot{\mathbf{x}} = B\mathbf{x}$  must decrease by some uniform, nonzero amount during each period of  $B_0$ 

### Another extension of van Kampen's theorem

#### Theorem

If A is differentiable,  $\mathbb{W}$ -matrix-valued function such that both A and its derivative are bounded, and the  $\omega$ -limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

### Another extension of van Kampen's theorem

#### **Theorem**

If A is differentiable,  $\mathbb{W}$ -matrix-valued function such that both A and its derivative are bounded, and the  $\omega$ -limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

• Proof: if  $||\mathbf{x}(t)||_1 \to r > 0$ , then  $\omega(A)$  contains a decomposable or splitting matrix

• Let  $\lambda_0, \lambda_1, \dots, \lambda_n$  be an ordering of the eigenvalues of A such that

$$0 = \lambda_0(t) \ge \Re(\lambda_1(t)) \ge \cdots \ge \Re(\lambda_n(t))$$

• Let  $\lambda_0, \lambda_1, \dots, \lambda_n$  be an ordering of the eigenvalues of A such that

$$0 = \lambda_0(t) \geq \Re(\lambda_1(t)) \geq \cdots \geq \Re(\lambda_n(t))$$

- In each extension, the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are not integrable
  - Scalar time-dependence:  $\lambda_1(t) = f(t)\mu_1$
  - Asymptotically periodic:  $\lambda_1$  approaches a nonpositive periodic function which is negative at least once during each period
  - A' bounded:  $\omega(\lambda_1)$  is contains negative number,  $\lambda'_1$  bounded



• Let  $\lambda_0, \lambda_1, \dots, \lambda_n$  be an ordering of the eigenvalues of A such that

$$0 = \lambda_0(t) \geq \Re(\lambda_1(t)) \geq \cdots \geq \Re(\lambda_n(t))$$

- In each extension, the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are not integrable
  - Scalar time-dependence:  $\lambda_1(t) = f(t)\mu_1$
  - Asymptotically periodic:  $\lambda_1$  approaches a nonpositive periodic function which is negative at least once during each period
  - A' bounded:  $\omega(\lambda_1)$  is contains negative number,  $\lambda_1'$  bounded

### Conjecture

If  $\Re(\lambda_1)$  is not integrable, then all probability distribution solutions of the master equation are (GAS).

• Let  $\lambda_0, \lambda_1, \dots, \lambda_n$  be an ordering of the eigenvalues of A such that

$$0 = \lambda_0(t) \ge \Re(\lambda_1(t)) \ge \cdots \ge \Re(\lambda_n(t))$$

- In each extension, the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are not integrable
  - Scalar time-dependence:  $\lambda_1(t) = f(t)\mu_1$
  - Asymptotically periodic:  $\lambda_1$  approaches a nonpositive periodic function which is negative at least once during each period
  - A' bounded:  $\omega(\lambda_1)$  is contains negative number,  $\lambda_1'$  bounded

### Conjecture

If  $\Re(\lambda_1)$  is not integrable, then all probability distribution solutions of the master equation are (GAS).

• Recall  $\Re(\lambda_1(t)) < 0$  implies  $rac{d||\mathbf{x}(t)||_1}{dt} < 0$  for any  $H_0$ -solution  $\mathbf{x}(t)$ 

40.40.41.41.1.000

• Let  $\lambda_0, \lambda_1, \dots, \lambda_n$  be an ordering of the eigenvalues of A such that

$$0 = \lambda_0(t) \geq \Re(\lambda_1(t)) \geq \cdots \geq \Re(\lambda_n(t))$$

- In each extension, the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are not integrable
  - Scalar time-dependence:  $\lambda_1(t) = f(t)\mu_1$
  - Asymptotically periodic:  $\lambda_1$  approaches a nonpositive periodic function which is negative at least once during each period
  - A' bounded:  $\omega(\lambda_1)$  is contains negative number,  $\lambda_1'$  bounded

### Conjecture

If  $\Re(\lambda_1)$  is not integrable, then all probability distribution solutions of the master equation are (GAS).

- Recall  $\Re(\lambda_1(t)) < 0$  implies  $rac{d||\mathbf{x}(t)||_1}{dt} < 0$  for any  $H_0$ -solution  $\mathbf{x}(t)$
- ullet The nonintegrability of  $\Re(\lambda_1)$  "should" ensure that  $||\mathbf{x}(t)||_1 o 0$

$$A(t) = \frac{1 - \cos(\pi t)}{2} A_1(t) + \frac{1 - \cos(\pi (t+1))}{2} A_2(t)$$

$$A_1(t) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & -\frac{1}{t+1} & 0 & 0 \\ 0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\ 0 & 0 & \frac{1}{t+1} & 0 \end{bmatrix}, \quad A_2(t) = \begin{bmatrix} -\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\ 0 & -\frac{1}{t+1} & 1 & 0 \\ 0 & 0 & -1 & 0 \\ \frac{1}{t+1} & 0 & 0 & 0 \end{bmatrix},$$

$$A(t) = rac{1-\cos(\pi t)}{2}A_1(t) + rac{1-\cos(\pi(t+1))}{2}A_2(t) \ A_1(t) = egin{bmatrix} -1 & 0 & 0 & 0 \ 1 & -rac{1}{t+1} & 0 & 0 \ 0 & rac{1}{t+1} & -rac{1}{t+1} & 0 \ 0 & 0 & rac{1}{t+1} & 0 \end{pmatrix}, \quad A_2(t) = egin{bmatrix} -rac{1}{t+1} & rac{1}{t+1} & 0 & 0 \ 0 & -rac{1}{t+1} & 1 & 0 \ 0 & 0 & -1 & 0 \ rac{1}{t+1} & 0 & 0 & 0 \end{bmatrix},$$

• A' bounded, A not decomposable, splitting  $\Rightarrow \lambda_1$  not integrable

◆ロト 4個ト 4 差ト 4 差ト 差 めなべ

$$A(t) = \frac{1 - \cos(\pi t)}{2} A_1(t) + \frac{1 - \cos(\pi (t+1))}{2} A_2(t)$$

$$A_1(t) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & -\frac{1}{t+1} & 0 & 0 \\ 0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\ 0 & 0 & \frac{1}{t+1} & 0 \end{bmatrix}, \quad A_2(t) = \begin{bmatrix} -\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\ 0 & -\frac{1}{t+1} & 1 & 0 \\ 0 & 0 & -1 & 0 \\ \frac{1}{t+1} & 0 & 0 & 0 \end{bmatrix},$$

- A' bounded, A not decomposable, splitting  $\Rightarrow \lambda_1$  not integrable
- $A\mathbf{e}_4 = \mathbf{0} \Rightarrow \mathbf{e}_4$  is stationary distribution

◆ロト 4個ト 4 差ト 4 差ト 差 めなべ

$$A(t) = \frac{1 - \cos(\pi t)}{2} A_1(t) + \frac{1 - \cos(\pi (t+1))}{2} A_2(t)$$

$$A_1(t) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & -\frac{1}{t+1} & 0 & 0 \\ 0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\ 0 & 0 & \frac{1}{t+1} & 0 \end{bmatrix}, \quad A_2(t) = \begin{bmatrix} -\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\ 0 & -\frac{1}{t+1} & 1 & 0 \\ 0 & 0 & -1 & 0 \\ \frac{1}{t+1} & 0 & 0 & 0 \end{bmatrix},$$

- A' bounded, A not decomposable, splitting  $\Rightarrow \lambda_1$  not integrable
- $A\mathbf{e}_4 = \mathbf{0} \Rightarrow \mathbf{e}_4$  is stationary distribution



**4**₱ **4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4**

### Converse of conjecture is false

$$A(t) = \begin{cases} A_1, & t \in [0,1), \\ A_2, & t \in [1,2). \end{cases} \quad A_1 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ A_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$



### Converse of conjecture is false

$$A(t) = \begin{cases} A_1, & t \in [0,1), \\ A_2, & t \in [1,2). \end{cases} \quad A_1 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ A_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

•  $\lambda_1(t) = 0$  for all  $t \ge 0$  but solutions are GAS



### Converse of conjecture is false

$$A(t) = \begin{cases} A_1, & t \in [0,1), \\ A_2, & t \in [1,2). \end{cases} \quad A_1 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ A_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

•  $\lambda_1(t) = 0$  for all  $t \ge 0$  but solutions are GAS



ロト 4月ト 4 手 ト 4 手 ト ラ タ 9 (へ

## New conjecture?

### New conjecture?

#### **Theorem**

If the derivative of A is bounded and the  $\omega$ -limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

### New conjecture?

#### **Theorem**

If the derivative of A is bounded and the  $\omega$ -limit set of A contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

### Conjecture

If the derivative of A is bounded and the  $\omega$ -limit set of contains at least one matrix which is neither decomposable nor splitting, then the probability distribution solutions of the master equation are GAS.

## Thank you!

#### Thanks to

- Jim Keener (Utah)
- NSF

