# Global asymptotic stability of solutions of nonautonomous master equations 

Berton Earnshaw James Keener<br>Department of Mathematics Department of Mathematics<br>Michigan State University<br>University of Utah

October 8, 2009

## What is a master equation?

## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{0}, \ldots, x_{n}\right\}$ be finite-state jump process


## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{0}, \ldots, x_{n}\right\}$ be finite-state jump process
- Assuming $X$ is a Markov process, the transition probabilities

$$
p(i, t \mid j, s)=\operatorname{Prob}\left\{X(t)=x_{i} \mid X(s)=x_{j}\right\} \quad(t \geq s \geq 0)
$$

satisfy the Chapman-Kolmogorov equations

$$
p(i, t \mid j, s)=\sum_{k=1}^{n} p(i, t \mid k, u) p(k, u \mid j, s) \quad(t \geq u \geq s) .
$$

## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{0}, \ldots, x_{n}\right\}$ be finite-state jump process
- Assuming $X$ is a Markov process, the transition probabilities

$$
p(i, t \mid j, s)=\operatorname{Prob}\left\{X(t)=x_{i} \mid X(s)=x_{j}\right\} \quad(t \geq s \geq 0)
$$

satisfy the Chapman-Kolmogorov equations

$$
p(i, t \mid j, s)=\sum_{k=1}^{n} p(i, t \mid k, u) p(k, u \mid j, s) \quad(t \geq u \geq s) .
$$

- Assuming transition probabilities are of the form

$$
p\left(i, t+\Delta t \mid x_{j}, t\right)=\delta_{i j}+a_{i j}(t) \Delta t+o(\Delta t) \quad(t \geq 0)
$$

$a_{i j}$ right-continuous, $\quad a_{i j} \geq 0(i \neq j), \quad a_{j j}=-\sum_{i \neq j} a_{i j}$

## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{0}, \ldots, x_{n}\right\}$ be finite-state jump process
- Assuming $X$ is a Markov process, the transition probabilities

$$
p(i, t \mid j, s)=\operatorname{Prob}\left\{X(t)=x_{i} \mid X(s)=x_{j}\right\} \quad(t \geq s \geq 0)
$$

satisfy the Chapman-Kolmogorov equations

$$
p(i, t \mid j, s)=\sum_{k=1}^{n} p(i, t \mid k, u) p(k, u \mid j, s) \quad(t \geq u \geq s) .
$$

- Assuming transition probabilities are of the form

$$
p\left(i, t+\Delta t \mid x_{j}, t\right)=\delta_{i j}+a_{i j}(t) \Delta t+o(\Delta t) \quad(t \geq 0)
$$

$a_{i j}$ right-continuous, $\quad a_{i j} \geq 0(i \neq j), \quad a_{j j}=-\sum_{i \neq j} a_{i j}$
one derives master equation from CKE in the limit $\Delta t \rightarrow 0$ :

$$
\begin{gathered}
\frac{d \mathbf{p}_{i}}{d t}=A(t) \mathbf{p}_{i} \\
A(t)=\left(a_{i j}(t)\right), \quad \mathbf{p}_{i}=\left(p_{i 0}, \ldots, p_{i n}\right)^{T}, \quad p_{i j}(t)=p(i, t \mid j, 0)
\end{gathered}
$$

## What is a master equation?

- Let $X: \mathbb{R}_{+} \rightarrow\left\{x_{0}, \ldots, x_{n}\right\}$ be finite-state jump process
- Assuming $X$ is a Markov process, the transition probabilities

$$
p(i, t \mid j, s)=\operatorname{Prob}\left\{X(t)=x_{i} \mid X(s)=x_{j}\right\} \quad(t \geq s \geq 0)
$$

satisfy the Chapman-Kolmogorov equations

$$
p(i, t \mid j, s)=\sum_{k=1}^{n} p(i, t \mid k, u) p(k, u \mid j, s) \quad(t \geq u \geq s) .
$$

- Assuming transition probabilities are of the form

$$
p\left(i, t+\Delta t \mid x_{j}, t\right)=\delta_{i j}+a_{i j}(t) \Delta t+o(\Delta t) \quad(t \geq 0)
$$

$a_{i j}$ right-continuous, $\quad a_{i j} \geq 0(i \neq j), \quad a_{j j}=-\sum_{i \neq j} a_{i j}$
one derives master equation from CKE in the limit $\Delta t \rightarrow 0$ :

$$
\begin{gathered}
\frac{d \mathbf{p}_{i}}{d t}=A(t) \mathbf{p}_{i} \\
A(t)=\left(a_{i j}(t)\right), \quad \mathbf{p}_{i}=\left(p_{i 0}, \ldots, p_{i n}\right)^{T}, \quad p_{i j}(t)=p(i, t \mid j, 0)
\end{gathered}
$$

- Matrices like $A(t)$ called $\mathbb{W}$-matrices [van Kampen]


## Ion channel with two identical, independent subunits



## Ion channel with two identical, independent subunits



- Each subunit has two states: open or closed


## Ion channel with two identical, independent subunits



- Each subunit has two states: open or closed
- Channel has 3 states: $x_{0}, x_{1}, x_{2}(i=\#$ open subunits)


## Ion channel with two identical, independent subunits



- Each subunit has two states: open or closed
- Channel has 3 states: $x_{0}, x_{1}, x_{2}$ ( $i=\#$ open subunits)
- Subunits open, close randomly with rates $\alpha, \beta$


## Ion channel with two identical, independent subunits



- Each subunit has two states: open or closed
- Channel has 3 states: $x_{0}, x_{1}, x_{2}$ ( $i=\#$ open subunits)
- Subunits open, close randomly with rates $\alpha, \beta$

$$
\text { State diagram: } \quad x_{0} \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} x_{1} \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} x_{2}
$$

## Master equation for ion channel kinetics



$$
x_{0} \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} x_{1} \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} x_{2}
$$

- $\mathbf{p}(t)=\left(p_{0}(t), p_{1}(t), p_{2}(t)\right)^{T}=$ probability distribution for $X(t)$

$$
p_{i}(t)=\operatorname{Prob}\left\{X(t)=x_{i} \mid \mathbf{p}(0)\right\}
$$

## Master equation for ion channel kinetics



$$
x_{0} \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} x_{1} \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} x_{2}
$$

- $\mathbf{p}(t)=\left(p_{0}(t), p_{1}(t), p_{2}(t)\right)^{T}=$ probability distribution for $X(t)$

$$
p_{i}(t)=\operatorname{Prob}\left\{X(t)=x_{i} \mid \mathbf{p}(0)\right\}
$$

Master equation: $\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}-2 \alpha & \beta & 0 \\ 2 \alpha & -\alpha-\beta & 2 \beta \\ 0 & \alpha & -2 \beta\end{array}\right]\left[\begin{array}{l}p_{0} \\ p_{1} \\ p_{2}\end{array}\right]$

## Behavior of solutions of autonomous master equation

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right] \\
& \alpha=\beta=1 \\
& \alpha=10, \beta=1
\end{aligned}
$$

## Behavior of solutions of autonomous master equation

$$
\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]
$$

$$
\alpha=1, \beta=0
$$

$$
\alpha=0, \beta=1
$$




## van Kampen's theorem for autonomous master equations

Theorem
Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

A is splitting if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

For all $\mathbb{W}$-matrices,
$A$ is splitting if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \quad P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

For all $\mathbb{W}$-matrices,

- All columns sum to zero $\Rightarrow$ zero is eigenvalue


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \quad P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

For all $\mathbb{W}$-matrices,

- All columns sum to zero $\Rightarrow$ zero is eigenvalue
- Other eigenvalues have negative real part


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.
$A$ is decomposable if there exists permutation matrix $P$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \quad P^{-1} A P=\left[\begin{array}{ccc}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
0 & 0 & A_{3}
\end{array}\right]
$$

For all $\mathbb{W}$-matrices,

- All columns sum to zero $\Rightarrow$ zero is eigenvalue
- Other eigenvalues have negative real part
- Zero is repeated eigenvalue $\Leftrightarrow$ decomposable or splitting


## van Kampen's theorem for autonomous master equations

Theorem
Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

Proof.

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

Proof.

- Let $\lambda_{0}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{0} \geq \Re\left(\lambda_{1}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{0}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{0} \geq \Re\left(\lambda_{1}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

- $\Re\left(\lambda_{i}\right)<0$ for $i=1, \ldots, n$ since $A$ is not decomposable, splitting


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{0}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{0} \geq \Re\left(\lambda_{1}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

- $\Re\left(\lambda_{i}\right)<0$ for $i=1, \ldots, n$ since $A$ is not decomposable, splitting
- Every probability distribution solution $\mathbf{p}$ of master equation is of form

$$
\mathbf{p}(t)=\mathbf{v}_{0}+c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $\mathbf{v}_{i}$ 's are eigenvectors and $c_{i}$ 's are polynomials in $t$

## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{0}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{0} \geq \Re\left(\lambda_{1}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

- $\Re\left(\lambda_{i}\right)<0$ for $i=1, \ldots, n$ since $A$ is not decomposable, splitting
- Every probability distribution solution $\mathbf{p}$ of master equation is of form

$$
\mathbf{p}(t)=\mathbf{v}_{0}+c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $\mathbf{v}_{i}$ 's are eigenvectors and $c_{i}$ 's are polynomials in $t$

- Therefore, $\mathbf{p}(t) \rightarrow \mathbf{v}_{0}$ independent of initial conditions


## van Kampen's theorem for autonomous master equations

## Theorem

Suppose $A$ is a constant $\mathbb{W}$-matrix. If $A$ is neither decomposable nor splitting, then every probability distribution solution of the master equation approaches a unique stationary distribution.

## Proof.

- Let $\lambda_{0}, \ldots, \lambda_{n}$ be ordering of eigenvalues of $A$ such that

$$
0=\lambda_{0} \geq \Re\left(\lambda_{1}\right) \geq \cdots \geq \Re\left(\lambda_{n}\right)
$$

- $\Re\left(\lambda_{i}\right)<0$ for $i=1, \ldots, n$ since $A$ is not decomposable, splitting
- Every probability distribution solution $\mathbf{p}$ of master equation is of form

$$
\mathbf{p}(t)=\mathbf{v}_{0}+c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $\mathbf{v}_{i}$ 's are eigenvectors and $c_{i}$ 's are polynomials in $t$

- Therefore, $\mathbf{p}(t) \rightarrow \mathbf{v}_{0}$ independent of initial conditions
- Note: converse of theorem is also true


## Nonautonomous master equation



- Ion channel kinetics are dependent on external factors - e.g., membrane voltage and ligand concentration


## Nonautonomous master equation



- Ion channel kinetics are dependent on external factors - e.g., membrane voltage and ligand concentration
- Open and close rates $\alpha, \beta$ are functions of time!


## Nonautonomous master equation



- Ion channel kinetics are dependent on external factors - e.g., membrane voltage and ligand concentration
- Open and close rates $\alpha, \beta$ are functions of time!
- How will solutions behave now?


## Behavior of solutions of nonautonomous master equation

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right] \\
& \alpha=\beta=(t+1)^{-1} \\
& \alpha=\beta=\exp (-2 t)
\end{aligned}
$$

## Behavior of solutions of nonautonomous master equation

$$
\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]
$$

$$
\alpha=|\sin (t)|, \beta=|\cos (t)|
$$

$$
\alpha=\left|\sin \left(t e^{-1 / t}\right)\right|, \beta=\left|\cos \left(t e^{-1 / t}\right)\right|
$$




## Behavior of solutions of nonautonomous master equation

$$
\frac{d \mathbf{p}}{d t}=A \mathbf{p}=\left[\begin{array}{ccc}
-2 \alpha & \beta & 0 \\
2 \alpha & -\alpha-\beta & 2 \beta \\
0 & \alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]
$$

$\alpha=\Theta(\sin (\pi t)), \beta=\Theta(\cos (\pi t))$


$$
\begin{gathered}
\alpha=\sin \left(2 \tan ^{-1}(100 t)\right), \\
\beta=\cos \left(\tan ^{-1}(100 t)\right)
\end{gathered}
$$



## What causes solutions to approach each other?

## Current theory

If the transition rates vary according to specific functions of time, the concentration of each subunit state approaches to a specific function of time (in comparison to a constant value when transition rates are constant) regardless of the initial concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)

## What causes solutions to approach each other?

- As in autonomous case, for each $t \geq 0$
- 0 is a simple eigenvalue of $A(t)$
- other eigenvalues of $A(t)$ have negative real part


## What causes solutions to approach each other?

- As in autonomous case, for each $t \geq 0$
- 0 is a simple eigenvalue of $A(t)$
- other eigenvalues of $A(t)$ have negative real part
- Eigenstructure can be misleading for nonautonomous ODEs!


## What causes solutions to approach each other?

- As in autonomous case, for each $t \geq 0$
- 0 is a simple eigenvalue of $A(t)$
- other eigenvalues of $A(t)$ have negative real part
- Eigenstructure can be misleading for nonautonomous ODEs!

$$
\begin{aligned}
& a_{11}(t)=-1-9 \cos ^{2}(6 t)+12 \sin (6 t) \cos (6 t) \\
& a_{12}(t)=12 \cos ^{2}(6 t)+9 \sin (6 t) \cos (6 t) \\
& a_{21}(t)=-12 \sin ^{2}(6 t)+9 \sin (6 t) \cos (6 t) \\
& a_{22}(t)=-1-9 \sin ^{2}(6 t)-12 \sin (6 t) \cos (6 t)
\end{aligned}
$$

$A(t)=\left(a_{i j}(t)\right)$ has eigenvalues -1 and -10 for all $t \geq 0$, yet

$$
\mathbf{x}(t)=e^{2 t}\left[\begin{array}{l}
2 \sin (6 t)+\cos (6 t) \\
2 \cos (6 t)-\sin (6 t)
\end{array}\right]+2 e^{-13 t}\left[\begin{array}{l}
2 \cos (6 t)-\sin (6 t) \\
2 \sin (6 t)-\cos (6 t)
\end{array}\right]
$$

is a solution of $\dot{\mathbf{x}}=A(t) \mathbf{x}$

## $\mathcal{L}^{1}$-norm as Lyapunov function for $\mathrm{H}_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $\mathrm{H}_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $\mathrm{H}_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- $\mathbf{p}(t), \mathbf{q}(t)$ probability distribution solutions $\Rightarrow \mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- $\mathbf{p}(t), \mathbf{q}(t)$ probability distribution solutions $\Rightarrow \mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=-\sum_{i \in[n] \backslash I_{+}} & \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right| \\
& -\sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in I_{+}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|
\end{aligned}
$$

## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- $\mathbf{p}(t), \mathbf{q}(t)$ probability distribution solutions $\Rightarrow \mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=- & \sum_{i \in[n] \backslash I_{+}}
\end{aligned} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|, ~+\sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-a_{i j}(t)\left|x_{j}(t)\right|
$$

- $I_{+}, I_{-}$contain positive, negative indices of $\mathbf{x}(t)$, hence $\frac{d\|\mathbf{x}(t)\|_{1}}{d t} \leq 0$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- $\mathbf{p}(t), \mathbf{q}(t)$ probability distribution solutions $\Rightarrow \mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=- & \sum_{i \in[n] \backslash I_{+}}
\end{aligned} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|, ~+\sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-a_{i j}(t)\left|x_{j}(t)\right|
$$

- $I_{+}, I_{-}$contain positive, negative indices of $\mathbf{x}(t)$, hence $\frac{d\|\mathbf{x}(t)\|_{1}}{d t} \leq 0$
- If $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=0$ then $A(t)$ is decomposable or splitting $\left(\Rightarrow \lambda_{1}(t)=0\right)$


## $\mathcal{L}^{1}$-norm as Lyapunov function for $H_{0}$-solutions

- Recall $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- Define $H_{0}=\left\{\mathbf{x} \mid \sum_{i=1}^{n} x_{i}=0\right\}$
- $H_{0}$ is invariant manifold of master equation
- $\mathbf{p}(t), \mathbf{q}(t)$ probability distribution solutions $\Rightarrow \mathbf{p}(t)-\mathbf{q}(t) \in H_{0}$
- If $\mathbf{x}(t)$ is any $H_{0}$-solution, then for a.e. $t$ :

$$
\begin{aligned}
\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=- & \sum_{i \in[n] \backslash I_{+}}
\end{aligned} \sum_{j \in I_{+}} a_{i j}(t) x_{j}(t)-\sum_{i \in[n] \backslash I_{-}} \sum_{j \in I_{-}} a_{i j}(t)\left|x_{j}(t)\right|, ~+\sum_{i \in I_{-}} \sum_{j \in I_{+}} a_{i j}(t) x_{i j}(t)-x_{j}(t) \mid
$$

- $I_{+}, I_{-}$contain positive, negative indices of $\mathbf{x}(t)$, hence $\frac{d\|\mathbf{x}(t)\|_{1}}{d t} \leq 0$
- If $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}=0$ then $A(t)$ is decomposable or splitting $\left(\Rightarrow \lambda_{1}(t)=0\right)$
- Contrapositive: if $\Re\left(\lambda_{1}(t)\right)<0$ then $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}<0$


## First extension of van Kampen's theorem

$\alpha(t)=\beta(t)=(t+1)^{-1}$
$\alpha(t)=\beta(t)=\exp (-2 t)$


$$
A(t)=\alpha(t)\left[\begin{array}{ccc}
-2 & 1 & 0 \\
2 & -2 & 2 \\
0 & 1 & -2
\end{array}\right]
$$

## First extension of van Kampen's theorem

Theorem
Suppose $A(t)=f(t) M$ for all $t \geq 0$, where $M$ is constant $\mathbb{W}$-matrix and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if $M$ is neither decomposable nor splitting and $f$ is not integrable.

## First extension of van Kampen's theorem

Theorem
Suppose $A(t)=f(t) M$ for all $t \geq 0$, where $M$ is constant $\mathbb{W}$-matrix and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if $M$ is neither decomposable nor splitting and $f$ is not integrable.

- Proof similar to van Kampen's theorem since FMS is

$$
\Phi_{0}^{t}=\exp \left(\int_{0}^{t} A(t)\right)=\exp (F(t) M) \quad\left(F(t)=\int_{0}^{t} f(s) d s\right)
$$

## First extension of van Kampen's theorem

## Theorem

Suppose $A(t)=f(t) M$ for all $t \geq 0$, where $M$ is constant $\mathbb{W}$-matrix and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if $M$ is neither decomposable nor splitting and $f$ is not integrable.

- Proof similar to van Kampen's theorem since FMS is

$$
\Phi_{0}^{t}=\exp \left(\int_{0}^{t} A(t)\right)=\exp (F(t) M) \quad\left(F(t)=\int_{0}^{t} f(s) d s\right)
$$

- Hence every probability distribution solution $\mathbf{p}$ is of form

$$
\mathbf{p}(t)=\mathbf{v}_{0}+c_{1} e^{\mu_{1} F(t)} \mathbf{v}_{1}+\cdots+c_{n} e^{\mu_{n} F(t)} \mathbf{v}_{n}
$$

where $\mu_{i}, \mathbf{v}_{i}$ are eigenpairs of $M$ and $c_{i}$ 's are polynomials in $F(t)$

## First extension of van Kampen's theorem

## Theorem

Suppose $A(t)=f(t) M$ for all $t \geq 0$, where $M$ is constant $\mathbb{W}$-matrix and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Then every probability distribution solutions of the master equation approaches a unique stationary distribution if and only if $M$ is neither decomposable nor splitting and $f$ is not integrable.

- Proof similar to van Kampen's theorem since FMS is

$$
\Phi_{0}^{t}=\exp \left(\int_{0}^{t} A(t)\right)=\exp (F(t) M) \quad\left(F(t)=\int_{0}^{t} f(s) d s\right)
$$

- Hence every probability distribution solution $\mathbf{p}$ is of form

$$
\mathbf{p}(t)=\mathbf{v}_{0}+c_{1} e^{\mu_{1} F(t)} \mathbf{v}_{1}+\cdots+c_{n} e^{\mu_{n} F(t)} \mathbf{v}_{n}
$$

where $\mu_{i}, \mathbf{v}_{i}$ are eigenpairs of $M$ and $c_{i}$ 's are polynomials in $F(t)$

- $\mathbf{p}(t) \rightarrow \mathbf{v}_{0} \Leftrightarrow \Re\left(\mu_{i}\right)<0$ for $i=1, \ldots, n$, and $F(t) \rightarrow \infty$


## Extension for asymptotically periodic $A$

$$
\alpha=\Theta(\sin (\pi t)), \beta=\Theta(\cos (\pi t))
$$

$$
\alpha=\left|\sin \left(t e^{-1 / t}\right)\right|, \beta=\left|\cos \left(t e^{-1 / t}\right)\right|
$$




- In both cases, $A$ approaches a periodic matrix


## Extension for asymptotically periodic $A$

## Definition

The probability distribution solutions of a master equation are globally asymptotically stable (GAS) if for every pair of such solutions $\mathbf{p}, \mathbf{q}$

$$
\mathbf{p}(t)-\mathbf{q}(t) \rightarrow \mathbf{0} \text { as } t \rightarrow \infty
$$

## Theorem

Suppose $A$ is a continuous, $\mathbb{W}$-matrix-valued function, and that there exists a continuous, periodic, $\mathbb{W}$-matrix-valued function $B$, whose $\omega$-limit set contains at least one matrix that is neither decomposable nor splitting, such that

$$
\lim _{t \rightarrow \infty}\|A(t)-B(t)\|=0
$$

Then the probability distribution solutions of the master equation are GAS.

## Extension for asymptotically periodic $A$

## Definition

The probability distribution solutions of a master equation are globally asymptotically stable (GAS) if for every pair of such solutions $\mathbf{p}, \mathbf{q}$

$$
\mathbf{p}(t)-\mathbf{q}(t) \rightarrow \mathbf{0} \text { as } t \rightarrow \infty
$$

## Theorem

Suppose $A$ is a continuous, $\mathbb{W}$-matrix-valued function, and that there exists a continuous, periodic, $\mathbb{W}$-matrix-valued function $B$, whose $\omega$-limit set contains at least one matrix that is neither decomposable nor splitting, such that

$$
\lim _{t \rightarrow \infty}\|A(t)-B(t)\|=0
$$

Then the probability distribution solutions of the master equation are GAS.

- Proof: $\mathcal{L}^{1}$-norm of $H_{0}$-solutions of $\dot{\mathbf{x}}=B \mathbf{x}$ must decrease by some uniform, nonzero amount during each period of $B$.


## Another extension of van Kampen's theorem

Theorem
If $A$ is differentiable, $\mathbb{W}$-matrix-valued function such that both $A$ and its derivative are bounded, and the $\omega$-limit set of $A$ contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

## Another extension of van Kampen's theorem

## Theorem

If $A$ is differentiable, $\mathbb{W}$-matrix-valued function such that both $A$ and its derivative are bounded, and the $\omega$-limit set of $A$ contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

- Proof: if $\|\mathbf{x}(t)\|_{1} \rightarrow r>0$, then $\omega(A)$ contains a decomposable or splitting matrix


## One might conjecture...

- Let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ be an ordering of the eigenvalues of $A$ such that

$$
0=\lambda_{0}(t) \geq \Re\left(\lambda_{1}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)
$$

## One might conjecture...

- Let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ be an ordering of the eigenvalues of $A$ such that

$$
0=\lambda_{0}(t) \geq \Re\left(\lambda_{1}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)
$$

- In each extension, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are not integrable
- Scalar time-dependence: $\lambda_{1}(t)=f(t) \mu_{1}$
- Asymptotically periodic: $\lambda_{1}$ approaches a nonpositive periodic function which is negative at least once during each period
- $A^{\prime}$ bounded: $\omega\left(\lambda_{1}\right)$ is contains negative number, $\lambda_{1}^{\prime}$ bounded


## One might conjecture...

- Let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ be an ordering of the eigenvalues of $A$ such that

$$
0=\lambda_{0}(t) \geq \Re\left(\lambda_{1}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)
$$

- In each extension, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are not integrable
- Scalar time-dependence: $\lambda_{1}(t)=f(t) \mu_{1}$
- Asymptotically periodic: $\lambda_{1}$ approaches a nonpositive periodic function which is negative at least once during each period
- $A^{\prime}$ bounded: $\omega\left(\lambda_{1}\right)$ is contains negative number, $\lambda_{1}^{\prime}$ bounded


## Conjecture

If $\Re\left(\lambda_{1}\right)$ is not integrable, then all probability distribution solutions of the master equation are (GAS).

## One might conjecture...

- Let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ be an ordering of the eigenvalues of $A$ such that

$$
0=\lambda_{0}(t) \geq \Re\left(\lambda_{1}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)
$$

- In each extension, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are not integrable
- Scalar time-dependence: $\lambda_{1}(t)=f(t) \mu_{1}$
- Asymptotically periodic: $\lambda_{1}$ approaches a nonpositive periodic function which is negative at least once during each period
- $A^{\prime}$ bounded: $\omega\left(\lambda_{1}\right)$ is contains negative number, $\lambda_{1}^{\prime}$ bounded


## Conjecture

If $\Re\left(\lambda_{1}\right)$ is not integrable, then all probability distribution solutions of the master equation are (GAS).

- Recall $\Re\left(\lambda_{1}(t)\right)<0$ implies $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}<0$ for any $H_{0}$-solution $\mathbf{x}(t)$


## One might conjecture...

- Let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ be an ordering of the eigenvalues of $A$ such that

$$
0=\lambda_{0}(t) \geq \Re\left(\lambda_{1}(t)\right) \geq \cdots \geq \Re\left(\lambda_{n}(t)\right)
$$

- In each extension, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are not integrable
- Scalar time-dependence: $\lambda_{1}(t)=f(t) \mu_{1}$
- Asymptotically periodic: $\lambda_{1}$ approaches a nonpositive periodic function which is negative at least once during each period
- $A^{\prime}$ bounded: $\omega\left(\lambda_{1}\right)$ is contains negative number, $\lambda_{1}^{\prime}$ bounded


## Conjecture

If $\Re\left(\lambda_{1}\right)$ is not integrable, then all probability distribution solutions of the master equation are (GAS).

- Recall $\Re\left(\lambda_{1}(t)\right)<0$ implies $\frac{d\|\mathbf{x}(t)\|_{1}}{d t}<0$ for any $H_{0}$-solution $\mathbf{x}(t)$
- The nonintegrability of $\Re\left(\lambda_{1}\right)$ "should" ensure that $\|\mathbf{x}(t)\|_{1} \rightarrow 0$


## Counterexample for conjecture

$$
\begin{gathered}
A(t)=\frac{1-\cos (\pi t)}{2} A_{1}(t)+\frac{1-\cos (\pi(t+1))}{2} A_{2}(t) \\
A_{1}(t)=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & -\frac{1}{t+1} & 0 & 0 \\
0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\
0 & 0 & \frac{1}{t+1} & 0
\end{array}\right], \quad A_{2}(t)=\left[\begin{array}{cccc}
-\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\
0 & -\frac{1}{t+1} & 1 & 0 \\
0 & 0 & -1 & 0 \\
\frac{1}{t+1} & 0 & 0 & 0
\end{array}\right],
\end{gathered}
$$

## Counterexample for conjecture

$$
\begin{gathered}
A(t)=\frac{1-\cos (\pi t)}{2} A_{1}(t)+\frac{1-\cos (\pi(t+1))}{2} A_{2}(t) \\
A_{1}(t)=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & -\frac{1}{t+1} & 0 & 0 \\
0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\
0 & 0 & \frac{1}{t+1} & 0
\end{array}\right], \quad A_{2}(t)=\left[\begin{array}{cccc}
-\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\
0 & -\frac{1}{t+1} & 1 & 0 \\
0 & 0 & -1 & 0 \\
\frac{1}{t+1} & 0 & 0 & 0
\end{array}\right],
\end{gathered}
$$

- $A^{\prime}$ bounded, $A$ not decomposable, splitting $\Rightarrow \lambda_{1}$ not integrable


## Counterexample for conjecture

$$
\begin{gathered}
A(t)=\frac{1-\cos (\pi t)}{2} A_{1}(t)+\frac{1-\cos (\pi(t+1))}{2} A_{2}(t) \\
A_{1}(t)=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & -\frac{1}{t+1} & 0 & 0 \\
0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\
0 & 0 & \frac{1}{t+1} & 0
\end{array}\right], \quad A_{2}(t)=\left[\begin{array}{cccc}
-\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\
0 & -\frac{1}{t+1} & 1 & 0 \\
0 & 0 & -1 & 0 \\
\frac{1}{t+1} & 0 & 0 & 0
\end{array}\right],
\end{gathered}
$$

- $A^{\prime}$ bounded, $A$ not decomposable, splitting $\Rightarrow \lambda_{1}$ not integrable
- $A \mathbf{e}_{4}=\mathbf{0} \Rightarrow \mathbf{e}_{4}$ is stationary distribution


## Counterexample for conjecture

$$
\begin{gathered}
A(t)=\frac{1-\cos (\pi t)}{2} A_{1}(t)+\frac{1-\cos (\pi(t+1))}{2} A_{2}(t) \\
A_{1}(t)=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & -\frac{1}{t+1} & 0 & 0 \\
0 & \frac{1}{t+1} & -\frac{1}{t+1} & 0 \\
0 & 0 & \frac{1}{t+1} & 0
\end{array}\right], \quad A_{2}(t)=\left[\begin{array}{cccc}
-\frac{1}{t+1} & \frac{1}{t+1} & 0 & 0 \\
0 & -\frac{1}{t+1} & 1 & 0 \\
0 & 0 & -1 & 0 \\
\frac{1}{t+1} & 0 & 0 & 0
\end{array}\right],
\end{gathered}
$$

- $A^{\prime}$ bounded, $A$ not decomposable, splitting $\Rightarrow \lambda_{1}$ not integrable
- $A \mathbf{e}_{4}=\mathbf{0} \Rightarrow \mathbf{e}_{4}$ is stationary distribution



## Converse of conjecture is false

$$
A(t)=\left\{\begin{array}{ll}
A_{1}, & t \in[0,1), \\
A_{2}, & t \in[1,2) .
\end{array} \quad A_{1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right]\right.
$$

## Converse of conjecture is false

$$
A(t)=\left\{\begin{array}{ll}
A_{1}, & t \in[0,1), \\
A_{2}, & t \in[1,2) .
\end{array} \quad A_{1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right]\right.
$$

- $\lambda_{1}(t)=0$ for all $t \geq 0$ but solutions are GAS


## Converse of conjecture is false

$A(t)=\left\{\begin{array}{ll}A_{1}, & t \in[0,1), \\ A_{2}, & t \in[1,2) .\end{array} A_{1}=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1\end{array}\right]\right.$

- $\lambda_{1}(t)=0$ for all $t \geq 0$ but solutions are GAS



## New conjecture?

## New conjecture?

Theorem
If the derivative of $A$ is bounded and the $\omega$-limit set of $A$ contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

## New conjecture?

Theorem
If the derivative of $A$ is bounded and the $\omega$-limit set of $A$ contains no matrix which is either decomposable or splitting, then probability distribution solutions of the master equation are GAS.

## Conjecture

If the derivative of $A$ is bounded and the $\omega$-limit set of contains at least one matrix which is neither decomposable nor splitting, then the probability distribution solutions of the master equation are GAS.

## Thank you!

Thanks to

- Jim Keener (Utah)
- NSF

