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Example Ion Channel Kinetics

Ion channel with two identical subunits
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Example Ion Channel Kinetics

Ion channel with two identical subunits

• Each subunit either open or closed
• channel has 3 states: S0, S1, S2 (i = # open subunits)

• Subunits open, close randomly at rates α, β

• If X (t) ∈ {S0,S1,S2} denotes channel state at time t ≥ 0, then X is
a jump process

S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2
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Example Ion Channel Kinetics

Master equation for jump process

S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Let p(t) = (p0(t), p1(t), p2(t))
T be prob. dist. for X (t)
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α
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• Let p(t) = (p0(t), p1(t), p2(t))
T be prob. dist. for X (t)

• pi(t) = Prob{X (t) = Si}
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Example Ion Channel Kinetics

Master equation for jump process

S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Let p(t) = (p0(t), p1(t), p2(t))
T be prob. dist. for X (t)

• pi(t) = Prob{X (t) = Si}

• From state diagram we derive master equation for p

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β









p0

p1

p2
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Example Ion Channel Kinetics

Invariant manifolds of master equation

dp

dt
= Ap =
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2α −α− β 2β
0 α −2β
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Example Ion Channel Kinetics

Invariant manifolds of master equation

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β









p0

p1

p2





1 column sums equal zero ⇒ Hr = {p ∈ R
3 | 1Tp = r} is invariant

d(1Tp)

dt
= (1TA)p = 0 (1T = (1, 1, 1))
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1 column sums equal zero ⇒ Hr = {p ∈ R
3 | 1Tp = r} is invariant

d(1Tp)

dt
= (1TA)p = 0 (1T = (1, 1, 1))

2 off-diagonal entries nonnegative ⇒ K = {p ∈ R
3 | p ≥ 0} is invariant

dpi

dt
= (Ap)i ≥ 0 if pi = 0
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Invariant manifolds of master equation

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β









p0

p1

p2





1 column sums equal zero ⇒ Hr = {p ∈ R
3 | 1Tp = r} is invariant

d(1Tp)

dt
= (1TA)p = 0 (1T = (1, 1, 1))

2 off-diagonal entries nonnegative ⇒ K = {p ∈ R
3 | p ≥ 0} is invariant

dpi

dt
= (Ap)i ≥ 0 if pi = 0

3 Σ1 = K ∩ H1 = {p ∈ R
3 | p ≥ 0, 1Tp = 1} is invariant
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Example Ion Channel Kinetics

Invariant manifolds of master equation

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β









p0

p1

p2





1 column sums equal zero ⇒ Hr = {p ∈ R
3 | 1Tp = r} is invariant

d(1Tp)

dt
= (1TA)p = 0 (1T = (1, 1, 1))

2 off-diagonal entries nonnegative ⇒ K = {p ∈ R
3 | p ≥ 0} is invariant

dpi

dt
= (Ap)i ≥ 0 if pi = 0

3 Σ1 = K ∩ H1 = {p ∈ R
3 | p ≥ 0, 1Tp = 1} is invariant

• Probability distributions remain probability distributions!
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Example Ion Channel Kinetics

Behavior of solutions of autonomous master equation

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β









p0

p1

p2
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Example Ion Channel Kinetics

Behavior of solutions of autonomous master equation

dp

dt
= Ap =
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2α −α− β 2β
0 α −2β
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Example Ion Channel Kinetics

Eigenstructure of A when A is irreducible

A =
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Eigenstructure of A when A is irreducible

A =





−2α β 0
2α −α− β 2β
0 α −2β
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2α
−→
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β
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α
−→
←−
2β

S2

• Assume α 6= 0, β 6= 0

• Set γ = max{2α, 2β} and G = A + γI
• G is nonnegative, irreducible with left-eigenvector 1T and eigenvalue γ

• By Perron-Frobenius theorem
• γ is simple eigenvalue of G
• other eigenvalues of G have modulus less than γ

• right-eigenvector v associated with γ is positive
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Example Ion Channel Kinetics

Eigenstructure of A when A is irreducible

A =





−2α β 0
2α −α− β 2β
0 α −2β



 , S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Assume α 6= 0, β 6= 0

• Set γ = max{2α, 2β} and G = A + γI
• G is nonnegative, irreducible with left-eigenvector 1T and eigenvalue γ

• By Perron-Frobenius theorem
• γ is simple eigenvalue of G
• other eigenvalues of G have modulus less than γ

• right-eigenvector v associated with γ is positive

• Therefore
• 0 is simple eigenvalue of A
• other eigenvalues of A have negative real part
• ker(A) is one-dimensional, spanned by positive vector v
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Example Ion Channel Kinetics

Solutions of master equation when A is irreducible

A =





−2α β 0
2α −α− β 2β
0 α −2β



 , S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Let λ1, λ2, λ3 be eigenvalues of A with λ1 = 0 > ℜ(λ2) ≥ ℜ(λ3)
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 , S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Let λ1, λ2, λ3 be eigenvalues of A with λ1 = 0 > ℜ(λ2) ≥ ℜ(λ3)

• Let v1, v2, v3 be corresponding (generalized) eigenvectors with
v1 ∈ Σ1

• column space of A contained in H0 = {x ∈ R
3 | 1Tx = 0}, hence

v2, v3 ∈ H0

• By linear ODE theory, all probability distribution solutions of master
equation can be written

p(t) = exp(At)p(0) = v1 + c2e
λ2tv2 + c3e

λ3tv3

where either c2 or c3 may be linear in t
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Solutions of master equation when A is irreducible

A =





−2α β 0
2α −α− β 2β
0 α −2β



 , S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Let λ1, λ2, λ3 be eigenvalues of A with λ1 = 0 > ℜ(λ2) ≥ ℜ(λ3)

• Let v1, v2, v3 be corresponding (generalized) eigenvectors with
v1 ∈ Σ1

• column space of A contained in H0 = {x ∈ R
3 | 1Tx = 0}, hence

v2, v3 ∈ H0

• By linear ODE theory, all probability distribution solutions of master
equation can be written

p(t) = exp(At)p(0) = v1 + c2e
λ2tv2 + c3e

λ3tv3

where either c2 or c3 may be linear in t

• Therefore p(t)→ v1 for all initial conditions
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Example Ion Channel Kinetics

Eigenstructure of A when A is reducible but not zero

A =





0 β 0
0 −β 2β
0 0 −2β



 , S0
β
← S1

2β
← S2

• Assume α = 0 but β 6= 0

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 9 / 35



Example Ion Channel Kinetics

Eigenstructure of A when A is reducible but not zero

A =





0 β 0
0 −β 2β
0 0 −2β



 , S0
β
← S1

2β
← S2

• Assume α = 0 but β 6= 0

• Then λ1 = 0, λ2 = −β, λ3 = −2β

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 9 / 35



Example Ion Channel Kinetics

Eigenstructure of A when A is reducible but not zero

A =





0 β 0
0 −β 2β
0 0 −2β



 , S0
β
← S1

2β
← S2

• Assume α = 0 but β 6= 0

• Then λ1 = 0, λ2 = −β, λ3 = −2β

• Also v1 = (1, 0, 0)T and v2, v3 ∈ H0
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A =
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0 0 −2β



 , S0
β
← S1

2β
← S2

• Assume α = 0 but β 6= 0

• Then λ1 = 0, λ2 = −β, λ3 = −2β

• Also v1 = (1, 0, 0)T and v2, v3 ∈ H0

• Again, solution is

p(t) = exp(At)p(0) = v1 + c2e
−βtv2 + c3e

−2βtv3

hence p(t)→ (1, 0, 0)T for all initial conditions
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Eigenstructure of A when A is reducible but not zero

A =





0 β 0
0 −β 2β
0 0 −2β



 , S0
β
← S1

2β
← S2

• Assume α = 0 but β 6= 0

• Then λ1 = 0, λ2 = −β, λ3 = −2β

• Also v1 = (1, 0, 0)T and v2, v3 ∈ H0

• Again, solution is

p(t) = exp(At)p(0) = v1 + c2e
−βtv2 + c3e

−2βtv3

hence p(t)→ (1, 0, 0)T for all initial conditions

• Similarly, if β = 0 but α 6= 0, then p(t)→ (0, 0, 1)T
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Nonautonomous master equation
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Nonautonomous master equation
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• Ion channel kinetics are dependent on external factors such as
membrane voltage
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S0

2α
−→
←−
β

S1

α
−→
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2β

S2

• Ion channel kinetics are dependent on external factors such as
membrane voltage

• α, β are functions of time
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Example Ion Channel Kinetics

Nonautonomous master equation

S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Ion channel kinetics are dependent on external factors such as
membrane voltage

• α, β are functions of time

• How will solutions behave now?
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Example Ion Channel Kinetics

Behavior of solutions of nonautonomous master equation

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β
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Example Ion Channel Kinetics

Behavior of solutions of nonautonomous master equation

dp

dt
= Ap =





−2α β 0
2α −α− β 2β
0 α −2β
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Example Ion Channel Kinetics

What causes solutions to approach each other?
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Example Ion Channel Kinetics

What causes solutions to approach each other?
• As in autonomous case, for each t ≥ 0

• 0 is a simple eigenvalue of A(t)
• other eigenvalues of A(t) have negative real part
• ker(A(t)) is spanned by nonnegative vector v1(t) ∈ Σ1

• other (generalized) eigenvectors v2(t), . . . , vn(t) span H0
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• 0 is a simple eigenvalue of A(t)
• other eigenvalues of A(t) have negative real part
• ker(A(t)) is spanned by nonnegative vector v1(t) ∈ Σ1

• other (generalized) eigenvectors v2(t), . . . , vn(t) span H0

• Not enough to cause solutions to approach each other!
• eigenstructure is often misleading for nonautonomous ODEs:
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Example Ion Channel Kinetics

What causes solutions to approach each other?
• As in autonomous case, for each t ≥ 0

• 0 is a simple eigenvalue of A(t)
• other eigenvalues of A(t) have negative real part
• ker(A(t)) is spanned by nonnegative vector v1(t) ∈ Σ1

• other (generalized) eigenvectors v2(t), . . . , vn(t) span H0

• Not enough to cause solutions to approach each other!
• eigenstructure is often misleading for nonautonomous ODEs:

a11(t) = −1− 9 cos2(6t) + 12 sin(6t) cos(6t)

a12(t) = 12 cos2(6t) + 9 sin(6t) cos(6t)

a21(t) = −12 sin2(6t) + 9 sin(t) cos(6t)

a22(t) = −1− 9 sin2(6t)− 12 sin(6t) cos(6t)

A(t) = [aij(t)] has eigenvalues −1 and −10 for all t ≥ 0, yet

x(t) = e2t

[

2 sin(6t) + cos(6t)
2 cos(6t)− sin(6t)

]

+ 2e−13t

[

2 cos(6t)− sin(6t)
2 sin(6t)− cos(6t)

]

is a solution of ẋ = A(t)x
B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 13 / 35



Example Ion Channel Kinetics

Current theory

If the transition rates vary according to specific functions of
time, the concentration of each subunit state approaches to a
specific function of time (in comparison to a constant value
when transition rates are constant) regardless of the initial
concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)
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Outline

Outline for rest of talk

1 Set up the problem

2 Propose conjecture that characterizes large class of time-dependent
A’s for which probability distribution solutions of corresponding
master equation are globally asymptotically stable (i.e. all such
solutions approach each other in time)

3 Discuss van Kampen’s theorem for autonomous master equations

4 Generalize van Kampen’s theorem for nonautonomous master
equations, and show that each generalization is special case of
conjecture

5 Show that conjecture does not characterize all A’s endowing
probability distribution solutions of master equation with global
asymptotic stability

6 Discuss existence of invariant manifolds
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Set-up Master equation

Derivation of master equation

• Let X : R+ → {x1, . . . , xn} be (finite-state) jump process
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Set-up Master equation

Derivation of master equation

• Let X : R+ → {x1, . . . , xn} be (finite-state) jump process
• Since jump process is Markov process, the transition probabilities

p(xi , t|xj , s) = Prob{X (t) = xi | X (s) = xj} (t ≥ s ≥ 0)

satisfy Chapman-Kolmogorov equation

p(xi , t|xj , s) =
n

∑

k=1

p(xi , t|xk , u)p(xk , u|xj , s) (t ≥ u ≥ s).
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Set-up Master equation

Derivation of master equation

• Let X : R+ → {x1, . . . , xn} be (finite-state) jump process
• Since jump process is Markov process, the transition probabilities

p(xi , t|xj , s) = Prob{X (t) = xi | X (s) = xj} (t ≥ s ≥ 0)

satisfy Chapman-Kolmogorov equation

p(xi , t|xj , s) =
n

∑

k=1

p(xi , t|xk , u)p(xk , u|xj , s) (t ≥ u ≥ s).

• Assuming transition probabilities are of the form

p(xi , t + ∆t|xj , t) = aij(t)∆t + o(∆t) (t ≥ 0),

one derives master equation from CKE:

dp

dt
= A(t)p,

where off-diagonal entries are aij(t) ≥ 0 and ajj(t) = −
∑

i 6=j aij(t)
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satisfy Chapman-Kolmogorov equation
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• Assuming transition probabilities are of the form

p(xi , t + ∆t|xj , t) = aij(t)∆t + o(∆t) (t ≥ 0),

one derives master equation from CKE:

dp

dt
= A(t)p,

where off-diagonal entries are aij(t) ≥ 0 and ajj(t) = −
∑

i 6=j aij(t)
• van Kampen calls these W-matrices
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Set-up Master equation

Fundamental matrix solution and invariant manifolds
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dt
= A(t)p

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 17 / 35



Set-up Master equation

Fundamental matrix solution and invariant manifolds

dp

dt
= A(t)p

• Assume A is continuous ⇒ existence of fundamental matrix solution
Φt

s , t ≥ s ≥ 0:

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 17 / 35



Set-up Master equation

Fundamental matrix solution and invariant manifolds

dp

dt
= A(t)p

• Assume A is continuous ⇒ existence of fundamental matrix solution
Φt

s , t ≥ s ≥ 0:
• Φt

t is identity matrix
• Φt

uΦ
u
s = Φt

s when t ≥ u ≥ s
• x(t) = Φt

sy is unique solution of master equation with x(s) = y
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3 | 1Tp = r} is invariant
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Fundamental matrix solution and invariant manifolds

dp

dt
= A(t)p

• Assume A is continuous ⇒ existence of fundamental matrix solution
Φt

s , t ≥ s ≥ 0:
• Φt

t is identity matrix
• Φt

uΦ
u
s = Φt

s when t ≥ u ≥ s
• x(t) = Φt

sy is unique solution of master equation with x(s) = y

• column sums equal zero ⇒ Hr = {p ∈ R
3 | 1Tp = r} is invariant

• i.e. Φt
sHr ⊆ Hr for all t ≥ s ≥ 0

• off-diagonal entries nonnegative ⇒ K = {p ∈ R
3 | p ≥ 0} is invariant

• Σ1 = K ∩ H1 is invariant
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Set-up Master equation

Global asymptotic stability

dp

dt
= A(t)p

Definition

A probability distribution solution p of the master equation is globally
asymptotically stable (GAS) in the set of all such solutions if for all other
probability distribution solutions q,

p(t)− q(t)→ 0 as t →∞.

We say the master equation is GAS if its probability distribution solutions
are GAS.
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We say the master equation is GAS if its probability distribution solutions
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Set-up Master equation

Global asymptotic stability

dp

dt
= A(t)p

Definition

A probability distribution solution p of the master equation is globally
asymptotically stable (GAS) in the set of all such solutions if for all other
probability distribution solutions q,

p(t)− q(t)→ 0 as t →∞.

We say the master equation is GAS if its probability distribution solutions
are GAS.

• Note that p(t)− q(t) ∈ H0 for all t ≥ 0

• Therefore, master equation is GAS if and only if 0 is globally
asymptotically stable in H0
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Conjecture Statement

Conjecture

dp

dt
= A(t)p

Conjecture

Let A : R+ → R
n×n be a continuous, W-matrix-valued function, and let

λ1(t), . . . , λn(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that ℜ(λ1(t)) ≥ · · · ≥ ℜ(λn(t)) for all t ≥ 0. If ℜ(λ2)
is not integrable, then the master equation is GAS.
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Conjecture Motivation

Eigenstructure of W-matrices

• W-matrix: any matrix (including zero) whose off-diagonal entries are
nonnegative and whose column sums are zero
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Eigenstructure of W-matrices

• W-matrix: any matrix (including zero) whose off-diagonal entries are
nonnegative and whose column sums are zero

• If M is W-matrix, then by Perron-Frobenius theorem
• 0 is eigenvalue of M (not necessarily simple)
• there exists nonnegative eigenvector v of M associated with 0
• all other eigenvalues have real part < 0
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Conjecture Motivation

Eigenstructure of W-matrices

• W-matrix: any matrix (including zero) whose off-diagonal entries are
nonnegative and whose column sums are zero

• If M is W-matrix, then by Perron-Frobenius theorem
• 0 is eigenvalue of M (not necessarily simple)
• there exists nonnegative eigenvector v of M associated with 0
• all other eigenvalues have real part < 0

• Since column space of A is contained in H0, algebraic and geometric
multiplicities of 0 are equal

• Akx 6= v for any k ≥ 1, x ∈ R
n
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Conjecture Motivation

Null space of W-matrices

• Irreducible normal form: there exists permutation matrix P such that

P−1MP =











M1 N12 · · · N1k

0 M2 · · · N2k
...

...
. . .

...
0 0 · · · Mk











• each Mj is irreducible (and so necessarily square)
• each Nij is nonnegative matrix
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• M is irreducible if and only if k = 1
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• Irreducible normal form: there exists permutation matrix P such that

P−1MP =











M1 N12 · · · N1k

0 M2 · · · N2k
...

...
. . .

...
0 0 · · · Mk











• each Mj is irreducible (and so necessarily square)
• each Nij is nonnegative matrix

• M is irreducible if and only if k = 1
• ker(M) is spanned by positive vector v1 ∈ Σ1 (Perron-Frobenius)

• M is reducible if and only if k > 1
• ker(M) is spanned by nonnegative vector v1 ∈ Σ1 if and only if for each

j = 2, . . . , k there exists i < j such that Nij is not zero matrix
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Conjecture Motivation

Null space of W-matrices

• Irreducible normal form: there exists permutation matrix P such that

P−1MP =











M1 N12 · · · N1k

0 M2 · · · N2k
...

...
. . .

...
0 0 · · · Mk











• each Mj is irreducible (and so necessarily square)
• each Nij is nonnegative matrix

• M is irreducible if and only if k = 1
• ker(M) is spanned by positive vector v1 ∈ Σ1 (Perron-Frobenius)

• M is reducible if and only if k > 1
• ker(M) is spanned by nonnegative vector v1 ∈ Σ1 if and only if for each

j = 2, . . . , k there exists i < j such that Nij is not zero matrix
• Otherwise, ker(M) has dimension ≥ 2 ⇒ ker(M) ∩H0 is nontrivial
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Conjecture Motivation

Decomposable and splitting W-matrices

If M is reducible and the dimension of ker(M) is ≥ 2, then M is either
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Conjecture Motivation

Decomposable and splitting W-matrices

If M is reducible and the dimension of ker(M) is ≥ 2, then M is either

• decomposable if there exists permutation matrix P such that

P−1MP =

[

M1 0
0 M2

]

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 22 / 35



Conjecture Motivation

Decomposable and splitting W-matrices

If M is reducible and the dimension of ker(M) is ≥ 2, then M is either

• decomposable if there exists permutation matrix P such that

P−1MP =

[

M1 0
0 M2

]

• splitting if there exists permutation matrix P such that

P−1MP =





M1 0 N1

0 M2 N2

0 0 M3
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Conjecture Motivation

Conjecture revisited

Conjecture

Let A : R+ → R
n×n be a continuous, W-matrix-valued function, and let

λ1(t), . . . , λn(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that ℜ(λ1(t)) ≥ · · · ≥ ℜ(λn(t)) for all t ≥ 0. If ℜ(λ2)
is not integrable, then the master equation is GAS.

• λ1(t) = 0 for all t ≥ 0

• ℜ(λ2(t)) ≤ 0 for all t ≥ 0

• ℜ(λ2(t)) < 0⇔ ker(A(t)) ∩ H0 = {0}
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Conjecture Motivation

Conjecture revisited

Conjecture

Let A : R+ → R
n×n be a continuous, W-matrix-valued function, and let

λ1(t), . . . , λn(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that ℜ(λ1(t)) ≥ · · · ≥ ℜ(λn(t)) for all t ≥ 0. If ℜ(λ2)
is not integrable, then the master equation is GAS.

• λ1(t) = 0 for all t ≥ 0

• ℜ(λ2(t)) ≤ 0 for all t ≥ 0

• ℜ(λ2(t)) < 0⇔ ker(A(t)) ∩ H0 = {0}

But eigenstructure can be misleading!
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Conjecture Motivation

||x(t)||1 as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi | = sgn(x)T x
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Conjecture Motivation

||x(t)||1 as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi | = sgn(x)T x

• If x(t) is H0-solution of master equation, then ||x(t)||1 is
differentiable for a.e. t:

d ||x(t)||1
dt

= sgn(x(t))T A(t)x(t)

= −
∑

i∈[n]\I+

∑

j∈I+

aij(t)xj(t)−
∑

i∈[n]\I
−

∑

j∈I
−

aij(t) |xj(t)|

−
∑

i∈I
−

∑

j∈I+

aij(t)xj (t)−
∑

i∈I+

∑

j∈I
−

aij(t) |xj(t)|

• j ∈ I+ ⇔ xj(t) > 0 and j ∈ I− ⇔ xj(t) < 0⇒ d||x(t)||1
dt

≤ 0
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dt

≤ 0

• If d||x(t)||1
dt

= 0 then A(t) is decomposable or splitting (⇒ λ2(t) = 0)
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• Recall ||x||1 =
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i=1 |xi | = sgn(x)T x

• If x(t) is H0-solution of master equation, then ||x(t)||1 is
differentiable for a.e. t:
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i∈I+

∑

j∈I
−

aij(t) |xj(t)|

• j ∈ I+ ⇔ xj(t) > 0 and j ∈ I− ⇔ xj(t) < 0⇒ d||x(t)||1
dt

≤ 0

• If d||x(t)||1
dt

= 0 then A(t) is decomposable or splitting (⇒ λ2(t) = 0)

• The converse: if ℜ(λ2(t)) < 0 then d||x(t)||1
dt

< 0
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Conjecture Motivation

Conjecture rerevisited

Conjecture

Let A : R+ → R
n×n be a continuous, W-matrix-valued function, and let

λ1(t), . . . , λn(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that ℜ(λ1(t)) ≥ · · · ≥ ℜ(λn(t)) for all t ≥ 0. If ℜ(λ2)
is not integrable, then the master equation is GAS.

• If ℜ(λ2(t)) < 0 then d||x(t)||1
dt

< 0 for any H0-solution x

• The nonintegrability of ℜ(λ2) “should” ensure that ||x(t)||1 → 0
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van Kampen’s theorem Statement and proof

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
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van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• ℜ(λ2) < 0 since A is neither decomposable nor splitting
• ⇒ ℜ(λi ) < 0 (i = 2, . . . , n)
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van Kampen’s theorem Statement and proof

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• ℜ(λ2) < 0 since A is neither decomposable nor splitting
• ⇒ ℜ(λi ) < 0 (i = 2, . . . , n)

• Every probability distribution solution p of master equation is of form

p(t) = v1 + c2e
λ2tv2 + · · ·+ cne

λntvn

where ci ’s are polynomials in t of degree < n
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van Kampen’s theorem Statement and proof

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• ℜ(λ2) < 0 since A is neither decomposable nor splitting
• ⇒ ℜ(λi ) < 0 (i = 2, . . . , n)

• Every probability distribution solution p of master equation is of form

p(t) = v1 + c2e
λ2tv2 + · · ·+ cne

λntvn

where ci ’s are polynomials in t of degree < n

• Therefore, p(t)→ v1 independent of initial conditions

(Note: converse of theorem is also true)
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van Kampen’s theorem Generalizations

First generalization of van Kampen’s theorem

• van Kampen’s theorem is special case of conjecture
• λ2(t) < 0 is constant, so not integrable
• all probability distribution solutions approach v1, so master equation is

GAS
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van Kampen’s theorem Generalizations

First generalization of van Kampen’s theorem

• van Kampen’s theorem is special case of conjecture
• λ2(t) < 0 is constant, so not integrable
• all probability distribution solutions approach v1, so master equation is

GAS

• Theorem can be extended slightly using similar proof

Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and
f : R+ → R+ is continuous. Then master equation is GAS if and only if
M is neither decomposable nor splitting and f is not integrable.
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van Kampen’s theorem Generalizations

First generalization of van Kampen’s theorem

Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and
f : R+ → R+ is continuous. Then master equation is GAS if and only if
M is neither decomposable nor splitting and f is not integrable.

Proof.

• fundamental matrix solution is

Φt
s = exp

[
∫ t

s

A(u)du

]

= exp

[(
∫ t

s

f (u)du

)

M

]

• Every probability distribution solution p is of form

p(t) = v1 + c2e
µ2

R t

0 f (u)duv2 + · · ·+ cne
µn

R t

0 f (u)duvn

where µi ’s are eigenvalues of M

• Therefore, p(t)→ v1 if and only if
∫ t

0 f (u)du →∞
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van Kampen’s theorem Generalizations

Example of first generalization

dp

dt
= Ap = f (t)
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van Kampen’s theorem Generalizations

Generalization of van Kampen’s theorem for periodic A

Theorem

If A is continuous, periodic, W-matrix-valued function such that the
ω-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.
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van Kampen’s theorem Generalizations

Generalization of van Kampen’s theorem for periodic A

Theorem

If A is continuous, periodic, W-matrix-valued function such that the
ω-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.

• Let τ > 0 minimal period, E = {y ∈ H0 | ||y||1 = 1}, and

f : E → R+, f (y) = ||Φτ
0y||1
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van Kampen’s theorem Generalizations

Generalization of van Kampen’s theorem for periodic A

Theorem

If A is continuous, periodic, W-matrix-valued function such that the
ω-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.

• Let τ > 0 minimal period, E = {y ∈ H0 | ||y||1 = 1}, and

f : E → R+, f (y) = ||Φτ
0y||1

• Exists interval U ∈ [0, τ) such that A(t) is neither decomposable nor
splitting for all t ∈ U
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ω-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.

• Let τ > 0 minimal period, E = {y ∈ H0 | ||y||1 = 1}, and

f : E → R+, f (y) = ||Φτ
0y||1

• Exists interval U ∈ [0, τ) such that A(t) is neither decomposable nor
splitting for all t ∈ U

• Therefore f (y) < 1 for all y ∈ E since
d||Φt

0y||1
dt

< 0 for a.e. t ∈ U
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• Therefore f (y) < 1 for all y ∈ E since
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< 0 for a.e. t ∈ U

• Compactness of E ⇒ f (z) = max{f (y) | y ∈ E} for some z ∈ E
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van Kampen’s theorem Generalizations

Generalization of van Kampen’s theorem for periodic A

Theorem

If A is continuous, periodic, W-matrix-valued function such that the
ω-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.

• Let τ > 0 minimal period, E = {y ∈ H0 | ||y||1 = 1}, and

f : E → R+, f (y) = ||Φτ
0y||1

• Exists interval U ∈ [0, τ) such that A(t) is neither decomposable nor
splitting for all t ∈ U

• Therefore f (y) < 1 for all y ∈ E since
d||Φt

0y||1
dt

< 0 for a.e. t ∈ U

• Compactness of E ⇒ f (z) = max{f (y) | y ∈ E} for some z ∈ E

• Therefore, ||Φkτ
0 x||1 ≤ f (z)k ||x||1 → 0 as k →∞ for all x ∈ H0
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van Kampen’s theorem Generalizations

Further generalization for asymptotically periodic A

Theorem

If A is continuous, W-matrix-valued and there exists a continuous,
periodic, W-matrix-valued function B whose ω-limit set contains at least
one matrix that is neither decomposable nor splitting such that

lim
t→∞
||A(t)− B(t)||1 = 0,

then the master equation is GAS.

• Theorem is special case of conjecture since λ2 asymptotically
approaches a nonpositive periodic function which is negative at least
once during the period.
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van Kampen’s theorem Generalizations

Another generalization of van Kampen’s theorem

Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the ω-limit set of A contains no matrix which
is either decomposable or splitting, then the master equation is GAS.

• Proof is “involved”, is (correct) extension of van Kampen’s original
method

• Idea: show that if ||x(t)||1 → r > 0, then ω(A) contains a
decomposable or splitting matrix

• Theorem is special case of conjecture since ω(λ2) contains negative
number and λ′2(t) is bounded
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Incompleteness of conjecture Example

λ2(t) = 0 for all t ≥ 0 but master equation is GAS

A(t) =

{

A1, t ∈ [0, 1),

A2, t ∈ [1, 2),
, A1 =





−1 1 0
1 −1 0
0 0 0



 , A2 =





0 0 0
0 −1 1
0 1 −1
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Low-dimensional invariant manifolds

Low-dimensional invariant manifolds of Σ1

• If master equation is GAS and Σ ⊆ Σ1 is invariant manifold of master
equation, then Σ is globally attracting (i.e. limt→∞ p(t) ∈ Σ)
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Low-dimensional invariant manifolds

Low-dimensional invariant manifolds of Σ1

• If master equation is GAS and Σ ⊆ Σ1 is invariant manifold of master
equation, then Σ is globally attracting (i.e. limt→∞ p(t) ∈ Σ)

• In ion channel example, one-dimensional manifold B of all binomial
distributions is invariant

b(θ) =





(1− θ)2

2θ(1− θ)
θ2



 (θ ∈ [0, 1])

meaning

A(t)b(θ) =
db

dθ

dθ

dt
with

dθ

dt
= α(t)(1 − θ)− β(t)θ
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Low-dimensional invariant manifolds

Low-dimensional invariant manifolds of Σ1

• If master equation is GAS and Σ ⊆ Σ1 is invariant manifold of master
equation, then Σ is globally attracting (i.e. limt→∞ p(t) ∈ Σ)

• In ion channel example, one-dimensional manifold B of all binomial
distributions is invariant

b(θ) =





(1− θ)2

2θ(1− θ)
θ2



 (θ ∈ [0, 1])

meaning

A(t)b(θ) =
db

dθ

dθ

dt
with

dθ

dt
= α(t)(1 − θ)− β(t)θ

• Last equation holds for any choice of nonnegative functions α, β
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The end

Thank you!

Thanks to

• Jim Keener

• NSF-IGERT for funding
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