Sequences and the Difference Operator

Berton Earnshaw

February 16, 2005

1 Sequences

Number sequences appear all throughout mathematics. Examples are:

- $1,2,3,4,5,6, \ldots$ (the natural numbers)
- $1,4,9,16,25,26, \ldots$ (the square numbers)
- $3,9,27,81,243,729, \ldots$ (the powers of 3)
- $1,2,3,5,8,13, \ldots$ (the Fibonacci numbers)
- $1,2,4,7,12,20, \ldots$ (shifted Fibonacci numbers)
- $1,2,8,42,262,1828, \ldots$ (the meandric numbers)

Often we give the sequence a name or label so that we can easily reference it later. For instance, we may decide that a_{n} will represent the nth natural number. That is,

$$
a_{1}=1, a_{2}=2, a_{3}=3, a_{4}=4, a_{5}=5, a_{6}=6, \ldots
$$

and in general

$$
a_{n}=n
$$

Let b_{n} represent the nth square number. Then

$$
b_{1}=1, b_{2}=4, b_{3}=9, b_{4}=16, b_{5}=25, b_{6}=36, \ldots
$$

and in general

$$
b_{n}=n^{2} .
$$

Let c_{n} represent the nth power of 3 . Then

$$
c_{1}=3, c_{2}=9, c_{3}=27, c_{4}=81, c_{5}=243, c_{6}=729, \ldots
$$

and in general

$$
c_{n}=3^{n} .
$$

Notice that, using this formula for c_{n}, it makes sense to talk about c_{0}, that is, the 0 th power of 3 :

$$
c_{0}=3^{0}=1
$$

The same is true for a_{n} and b_{n} :

$$
a_{0}=0 \text { and } b_{0}=0^{2}=0
$$

These sequences are nice because we can write down a formula for the nth element in the sequence. That is, given the formula I can immediately calculate the nth element of the sequence. For instance, if I want to know the 277 th square number, I simply compute

$$
b_{277}=277^{2}=76729
$$

or if I want to know the 13 th power of 3 , I compute

$$
c_{13}=3^{13}=1594323
$$

The Fibonnaci numbers are a little different. I begin by giving them a name, say f_{n} for the nth Fibonacci number. Then

$$
f_{1}=1, f_{2}=2, f_{3}=3, f_{4}=5, f_{5}=8, f_{6}=13, \ldots
$$

But how do I write down a formula for this sequence?!? Right now it is not obvious. However, it is obvious that

$$
f_{1}=1, f_{2}=2, \text { and } f_{n}=f_{n-1}+f_{n-2} \text { for } n>2
$$

This is not a formula in the sense that I can immediately calculate the nth Fibonacci number from the sequence - the calculation requires knowledge of the previous two Fibonacci numbers. The equation $f_{n}=f_{n-1}+f_{n-2}$ is a called a recurrence relation for the Fibonacci numbers. In a sense, it is the next best thing to a formula - given the first couple of terms of the sequence, I can compute the rest rather quickly.

One of the things we will explore in these lectures is the following: given a recurrence relation for a sequence, can we derive its formula? The answer is sometimes yes. In the case of Fibonacci numbers, it turns out that

$$
f_{n}=\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1} \sqrt{5}}
$$

Call the nth shifted Fibonacci number g_{n}. Then g_{n} satisfies the recurrence relation

$$
g_{1}=1, g_{2}=2, \text { and } g_{n}=g_{n-1}+g_{n-2}+1 \text { for } n>2
$$

and the formula

$$
g_{n}=\frac{(3+\sqrt{5})(1+\sqrt{5})^{n}-(3-\sqrt{5})(1-\sqrt{5})^{n}}{2^{n+1} \sqrt{5}}-1
$$

The last sequence is very different from all the others. Let m_{n} be the nth meandric number. Then

$$
m_{1}=1, m_{2}=2, m_{3}=8, m_{4}=42, m_{5}=262, m_{6}=1828, \ldots
$$

As of today, there is no formula or recurrence relation to describe this sequence - but maybe you'll figure one out!

1.1 Exercises

Write down a formula and/or a recurrence relation for the following sequences.

1. $23,23,23,23,23,23, \ldots$
2. $0,1,8,27,64,125,216, \ldots$
3. $7,8,15,34,71,132,223, \ldots$
4. $0,1,0,-1,0,1,0,-1, \ldots$
5. $1,2,6,24,120,720, \ldots$
6. $1,7,19,37,61,91, \ldots$

1.2 Solutions

1. $23,23,23,23,23,23, \ldots$
$a_{n}=23 ; \quad a_{1}=23, a_{n}=a_{n-1}$ for $n>1$
2. $0,1,8,27,64,125,216, \ldots$
$b_{n}=n^{3} ; \quad b_{0}=0, b_{n+1}=b_{n}+z_{n}$
3. $7,8,15,34,71,132,223, \ldots$
$c_{n}=b_{n}+7=n^{3}+7 ; \quad c_{0}=7, c_{n+1}=c_{n}+z_{n}$
4. $0,1,0,-1,0,1,0,-1, \ldots$ $x_{n}=\sin \left(n \frac{\pi}{2}\right)$
5. $1,2,6,24,120,720, \ldots$ $y_{n}=n!$
6. $1,7,19,37,61,91, \ldots$
$z_{n}=b_{n+1}-b_{n}=3 n^{2}+3 n+1 ; z_{0}=1, z_{n}=z_{n-1}+6 n$ for $n>1$

2 The Difference Operator

How did the exercises go? My guess is that you were able to write down formulae for exercises 1 through 5 quickly, but only came up with a recurrence relation for exercise 6. What is hard about exercise 6? You have probably seen the other five sequences before (or at least sequences very similar) and as a result you already have a good intuition for the numbers appearing in these sequences. But the sequence in exercise 6 is not so common. Let's look at it again:

$$
1,7,19,37,61,91, \ldots
$$

Let's call the nth term in this sequence z_{n} (here we will assume $z_{0}=1, z_{1}=7$, etc.). Is this sequence related to any of the other sequences from the exercises?

Surprisingly (or not), it is related to the sequence in exercise 2 . Let b_{n} be this sequence. We can easily spot the formula for b_{n} :

$$
b_{n}=n^{3} .
$$

Now what was the recurrence relation you came up with for b_{n} ? One recurrence relation is

$$
b_{0}=0, b_{n+1}=b_{n}+z_{n} \quad(n \geq 0)
$$

Another way to look at this is that the difference between the $(n+1)$ th and nth element of the sequence b_{n} is the nth element in the sequence z_{n} :

$$
b_{n+1}-b_{n}=z_{n} \quad(n \geq 0)
$$

Therefore, the formula for z_{n} is

$$
\begin{aligned}
z_{n} & =b_{n+1}-b_{n} \\
& =(n+1)^{3}-n^{3} \\
& =n^{3}+3 n^{2}+3 n+1-n^{3} \\
& =3 n^{2}+3 n+1 .
\end{aligned}
$$

We have a name for this relationship between the sequences b_{n} and z_{n}. We say that the sequence z_{n} is the difference of the sequence b_{n} and write

$$
\Delta b_{n} \equiv b_{n+1}-b_{n}=z_{n}
$$

and call Δ the difference operator.
Now notice something else. Let c_{n} represent the nth element of the sequence in exercise 3. It is clear that

$$
c_{n}=n^{3}+7
$$

What is Δc_{n} ?

$$
\begin{aligned}
\Delta c_{n} & =c_{n+1}-c_{n} \\
& =(n+1)^{3}+7-\left(n^{3}+7\right) \\
& =n^{3}+3 n^{2}+3 n+1+7-n^{3}-7 \\
& =3 n^{2}+3 n+1 \\
& =z_{n}
\end{aligned}
$$

Wow! The difference of c_{n} is again z_{n}. At first this may seem surprising, but actually it is quite obvious given the relationship between b_{n} and c_{n}.

What are the differences of the other sequences in the exercises? Let a_{n} be the sequence in exercise 1. Then $a_{n}=23$ and

$$
\Delta a_{n}=a_{n+1}-a_{n}=23-23=0
$$

Let x_{n} be the sequence in exercise 4 . Then $x_{n}=\sin (n \pi / 2)$ and

$$
\begin{aligned}
\Delta x_{n} & =x_{n+1}-x_{n} \\
& =\sin \left((n+1) \frac{\pi}{2}\right)-\sin \left(n \frac{\pi}{2}\right) \\
& =\sin \left(n \frac{\pi}{2}+\frac{\pi}{2}\right)-\sin \left(n \frac{\pi}{2}\right) \\
& =\sin \left(n \frac{\pi}{2}\right) \cos \left(\frac{\pi}{2}\right)-\cos \left(n \frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)-\sin \left(n \frac{\pi}{2}\right) \\
& =\sin \left(n \frac{\pi}{2}\right) \cdot 0-\cos \left(n \frac{\pi}{2}\right) \cdot 1-\sin \left(n \frac{\pi}{2}\right) \\
& =-\cos \left(n \frac{\pi}{2}\right)-\sin \left(n \frac{\pi}{2}\right) .
\end{aligned}
$$

Using this formula to compute the first few elements of the difference sequence gives us
$\Delta x_{0}=-1, \Delta x_{1}=-1, \Delta x_{2}=1, \Delta x_{3}=1, \Delta x_{4}=-1, \Delta x_{5}=-1, \Delta x_{6}=1, \Delta x_{7}=1, \ldots$
which is exactly what we expect.
Let y_{n} represent the nth element in the sequence of exercise 5 . Then $y_{n}=n!$, and

$$
\begin{aligned}
\Delta y_{n} & =y_{n+1}-y_{n} \\
& =(n+1)!-n! \\
& =(n+1) \cdot n!-n! \\
& =(n+1-1) \cdot n! \\
& =n \cdot n!
\end{aligned}
$$

Finally, we know that $z_{n}=3 n^{2}+3 n+1$. Thus

$$
\begin{aligned}
\Delta z_{n} & =z_{n+1}-z_{n} \\
& =3(n+1)^{2}+3(n+1)+1-\left(3 n^{2}+3 n+1\right) \\
& =3\left(n^{2}+2 n+1\right)+3 n+3+1-3 n^{2}-3 n-1 \\
& =3 n^{2}+6 n+3+3 n+3+1-3 n^{2}-3 n-1 \\
& =6 n+6 \\
& =6(n+1)
\end{aligned}
$$

Isn't this fun?!?

2.1 Exercises

Compute the difference of each of the following sequences.

1. n^{4}
2. e^{n}
3. $\ln (n)$
4. $n \underline{3} \equiv \frac{n!}{(n-3)!}$ for $n \geq 3$
5. $\binom{n}{3} \equiv \frac{n!}{(n-3)!3!}$ for $n \geq 3$

2.2 Solutions

1. $\Delta n^{4}=(n+1)^{4}-n^{4}=n^{4}+4 n^{3}+6 n^{2}+4 n+1-n^{4}=4 n^{3}+6 n^{2}+4 n+1$
2. $\Delta e^{n}=e^{n+1}-e^{n}=e \cdot e^{n}-e^{n}=(e-1) e^{n}$
3. $\Delta \ln (n)=\ln (n+1)-\ln (n)=\ln \left(\frac{n+1}{n}\right)=\ln \left(1+\frac{1}{n}\right) \approx \frac{1}{n}$
4.

$$
\begin{aligned}
\Delta n^{\underline{3}} & =(n+1)^{\underline{3}}-n^{\underline{3}} \\
& =\frac{(n+1)!}{(n+1-3)!}-\frac{n!}{(n-3)!} \\
& =\frac{(n+1)!}{(n-2)!}-\frac{(n-2) \cdot n!}{(n-2)!} \\
& =\frac{(n+1) \cdot n!-(n-2) \cdot n!}{(n-2)!} \\
& =\frac{(n+1-(n-2)) \cdot n!}{(n-2)!} \\
& =3 \frac{n!}{(n-2)!} \\
& =3 n^{\underline{2}}
\end{aligned}
$$

5.

$$
\begin{aligned}
\Delta\binom{n}{3} & =\binom{n+1}{3}-\binom{n}{3} \\
& =\frac{(n+1)!}{(n+1-3)!3!}-\frac{n!}{(n-3)!3!} \\
& =\frac{1}{3!}\left[\frac{(n+1)!}{(n-2)!}-\frac{n!}{(n-3)!}\right] \\
& =\frac{1}{3!} \cdot \Delta n^{\underline{3}} \\
& =\frac{1}{3!} \cdot 3 \frac{n!}{(n-2)!} \\
& =\frac{n!}{(n-2)!2!} \\
& =\binom{n}{2}
\end{aligned}
$$

3 More on the Difference Operator

This is fun, isn't it? We now prove an important theorem about the difference operator.

Theorem 1. Let a_{n} and b_{n} be sequences, and let c be any number. Then

1. $\Delta\left(a_{n}+b_{n}\right)=\Delta a_{n}+\Delta b_{n}$, and
2. $\Delta\left(c \cdot a_{n}\right)=c \cdot \Delta a_{n}$.

Proof. We simply calculate

$$
\begin{aligned}
\Delta\left(a_{n}+b_{n}\right) & =\left(a_{n+1}+b_{n+1}\right)-\left(a_{n}+b_{n}\right) \\
& =\left(a_{n+1}-a_{n}\right)+\left(b_{n+1}-b_{n}\right) \\
& =\Delta a_{n}+\Delta b_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(c \cdot a_{n}\right) & =c \cdot a_{n+1}-c \cdot a_{n} \\
& =c \cdot\left(a_{n+1}-a_{n}\right) \\
& =c \cdot \Delta a_{n}
\end{aligned}
$$

In the language of mathematics, Theorem 1 tells us that the difference operator is a linear operator. This is a very convenient property for an operator to have, as will become evident in the following proposition.

Proposition 1 (The difference of a polynomial). Let a_{n} be a polynomial in n of degree $k \geq 1$. Then Δa_{n} is a polynomial of degree $k-1$.

We will begin by proving a short lemma.
Lemma 1. $\Delta n^{k}=\sum_{i=0}^{k-1}\binom{k}{i} n^{i}$ for all $k=1,2,3, \ldots$.
Proof. By the binomial theorem

$$
\begin{aligned}
(n+1)^{k} & =\sum_{i=0}^{k}\binom{k}{i} n^{i} \\
& =\binom{k}{0}+\binom{k}{1} n+\binom{k}{2} n^{2}+\cdots+\binom{k}{k-1} n^{k-1}+\binom{k}{k} n^{k}
\end{aligned}
$$

Notice $\binom{k}{k}=\frac{k!}{(k-k)!k!}=1$ so

$$
\begin{aligned}
\Delta n^{k} & =(n+1)^{k}-n^{k} \\
& =\sum_{i=0}^{k}\binom{k}{i} n^{i}-n^{k} \\
& =\sum_{i=0}^{k-1}\binom{k}{i} n^{i}+\binom{k}{k} n^{k}-n^{k} \\
& =\sum_{i=0}^{k-1}\binom{k}{i} n^{i}
\end{aligned}
$$

Proof of Proposition 1. If a_{n} is a polynomial in n of degree k, then

$$
a_{n}=\sum_{i=0}^{k} c_{i} n^{i}=c_{0}+c_{1} n+c_{2} n^{2}+\cdots+c_{k-1} n^{k-1}+c_{k} n^{k}
$$

for some constants $c_{0}, c_{1}, \ldots, c_{k}$ where $c_{k} \neq 0$. Then by the linearity of the difference opeartor

$$
\Delta a_{n}=\Delta \sum_{i=0}^{k} c_{i} n^{i}=\sum_{i=0}^{k} c_{i} \Delta n^{i}
$$

We just saw in Lemma 1 that Δn^{i} is a polynomial of degree $i-1$ for $i \geq 1$. For $i=0, \Delta n^{0}=\Delta 1=0$. Therefore, Δa_{n} is the sum of polynomials of degrees 0 through $k-1$. Thus Δa_{n} is a polynomial of degree $k-1$.

Now it is your turn to compute the difference of a few general sequences. Use the linearity of the difference operator when possible.

3.1 Exercises

Compute the difference of the following sequences. Here $b>0, c$ is a constant and k is a natural number such that $1 \leq k \leq n$.

1. $c \cdot b^{n}$ (exponential sequence)
2. $c \cdot \log _{b}(n)$ (logarithmic sequence)
3. $n^{\underline{k}}=\frac{n!}{(n-k)!}($ falling factorial sequence $)$
4. $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ (binomial coefficient sequence)

3.2 Solutions

1.

$$
\begin{aligned}
\Delta c \cdot b^{n} & =c \Delta b^{n} \\
& =c\left(b^{n+1}-b^{n}\right) \\
& =c\left(b \cdot b^{n}-b^{n}\right) \\
& =c(b-1) b^{n}
\end{aligned}
$$

2.

$$
\begin{aligned}
\Delta c \log _{b}(n) & =c \Delta \log _{b}(n) \\
& =c\left(\log _{b}(n+1)-\log _{b}(n)\right) \\
& =c \log _{b}\left(\frac{n+1}{n}\right) \\
& =c \log _{b}\left(1+\frac{1}{n}\right)
\end{aligned}
$$

3.

$$
\begin{aligned}
\Delta n^{\underline{k}} & =(n+1)^{\underline{k}}-n^{\underline{k}} \\
& =\frac{(n+1)!}{(n+1-k)!}-\frac{n!}{(n-k)!} \\
& =\frac{(n+1)!}{(n+1-k)!}-\frac{(n+1-k) \cdot n!}{(n+1-k)!} \\
& =\frac{(n+1) \cdot n!-(n+1-k) \cdot n!}{(n+1-k)!} \\
& =\frac{(n+1-(n+1-k)) \cdot n!}{(n+1-k)!} \\
& =\frac{k \cdot n!}{(n+1-k)!} \\
& =k \frac{n!}{(n-(k-1))!} \\
& =k n \frac{k-1}{}
\end{aligned}
$$

4. This follows easily from the previous exercise since $\binom{n}{k}=\frac{n!}{(n-k)!k!}=\frac{1}{k!} n \underline{k}$:

$$
\begin{aligned}
\Delta\binom{n}{k} & =\Delta \frac{1}{k!} n^{\underline{k}} \\
& =\frac{1}{k!} \Delta n^{\underline{k}} \\
& =\frac{k}{k!} n \frac{k-1}{} \\
& =\frac{1}{(k-1)!} \frac{n!}{(n-(k-1))!} \\
& =\frac{n!}{(n-(k-1))!(k-1)!} \\
& =\binom{n}{k-1}
\end{aligned}
$$

One could also see this by considering Pascal's triangle.

3.3 Take-Home Exercises

For the first three exercises, it is helpful to recall that

$$
n^{\underline{k}}=\frac{n!}{(n-k)!}=n(n-1)(n-2) \cdots(n-k+2)(n-k+1)
$$

That is, $n \underline{k}$ is a polynomial in n of degree k.

1. Give the formula for a sequence a_{n} such that $\Delta a_{n}=n$. (hint: notice $n=n^{\underline{1}}$ and recall that $\Delta n^{\underline{2}}=2 n^{\underline{1}}$)
2. Give the formula for a sequence b_{n} such that $\Delta b_{n}=n^{2}$. (hint: notice $n^{2}=n^{\underline{2}}+n^{\underline{1}}$)
3. Give the formula for a sequence c_{n} such that $\Delta c_{n}=n^{3}$. (hint: write n^{3} as a linear combination of $n^{\underline{3}}, n^{\underline{2}}$ and $n^{\underline{1}}$)
4. Give the formula for a sequence d_{n} such that $\Delta d_{n}=d_{n}$. (hint: consider an exponential sequence)

3.4 Solutions to Take-Home Exercises

1. $a_{n}=\frac{1}{2} n^{\underline{2}}=\frac{n(n-1)}{2}$, for example
2. $b_{n}=\frac{1}{3} n^{\underline{3}}+\frac{1}{2} n^{\underline{2}}=\frac{n(n-1)(2 n-1)}{6}$, for example
3. $c_{n}=\frac{1}{4} n^{\underline{4}}+n^{\underline{3}}+\frac{1}{2} n^{\underline{2}}=\frac{n^{2}(n-1)^{2}}{4}$, for example
4. $d_{n}=2^{n}$, for example
