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1 Sequences

Number sequences appear all throughout mathematics. Examples are:

• 1, 2, 3, 4, 5, 6, . . . (the natural numbers)

• 1, 4, 9, 16, 25, 26, . . . (the square numbers)

• 3, 9, 27, 81, 243, 729, . . . (the powers of 3)

• 1, 2, 3, 5, 8, 13, . . . (the Fibonacci numbers)

• 1, 2, 4, 7, 12, 20, . . . (shifted Fibonacci numbers)

• 1, 2, 8, 42, 262, 1828, . . . (the meandric numbers)

Often we give the sequence a name or label so that we can easily reference
it later. For instance, we may decide that an will represent the nth natural
number. That is,

a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 5, a6 = 6, . . .

and in general
an = n.

Let bn represent the nth square number. Then

b1 = 1, b2 = 4, b3 = 9, b4 = 16, b5 = 25, b6 = 36, . . .

and in general
bn = n2.

Let cn represent the nth power of 3. Then

c1 = 3, c2 = 9, c3 = 27, c4 = 81, c5 = 243, c6 = 729, . . .

and in general
cn = 3n.
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Notice that, using this formula for cn, it makes sense to talk about c0, that is,
the 0th power of 3:

c0 = 30 = 1.

The same is true for an and bn:

a0 = 0 and b0 = 02 = 0.

These sequences are nice because we can write down a formula for the nth
element in the sequence. That is, given the formula I can immediately calculate
the nth element of the sequence. For instance, if I want to know the 277th
square number, I simply compute

b277 = 2772 = 76729

or if I want to know the 13th power of 3, I compute

c13 = 313 = 1594323

The Fibonnaci numbers are a little different. I begin by giving them a name,
say fn for the nth Fibonacci number. Then

f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, f6 = 13, . . .

But how do I write down a formula for this sequence?!? Right now it is not
obvious. However, it is obvious that

f1 = 1, f2 = 2, and fn = fn−1 + fn−2 for n > 2.

This is not a formula in the sense that I can immediately calculate the nth
Fibonacci number from the sequence – the calculation requires knowledge of
the previous two Fibonacci numbers. The equation fn = fn−1 + fn−2 is a
called a recurrence relation for the Fibonacci numbers. In a sense, it is the next
best thing to a formula – given the first couple of terms of the sequence, I can
compute the rest rather quickly.

One of the things we will explore in these lectures is the following: given
a recurrence relation for a sequence, can we derive its formula? The answer is
sometimes yes. In the case of Fibonacci numbers, it turns out that

fn =

(

1 +
√

5
)n+1 −

(

1 −
√

5
)n+1

2n+1
√

5
.

Call the nth shifted Fibonacci number gn. Then gn satisfies the recurrence
relation

g1 = 1, g2 = 2, and gn = gn−1 + gn−2 + 1 for n > 2

and the formula

gn =

(

3 +
√

5
) (

1 +
√

5
)n −

(

3 −
√

5
) (

1 −
√

5
)n

2n+1
√

5
− 1.
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The last sequence is very different from all the others. Let mn be the nth
meandric number. Then

m1 = 1, m2 = 2, m3 = 8, m4 = 42, m5 = 262, m6 = 1828, . . .

As of today, there is no formula or recurrence relation to describe this sequence
– but maybe you’ll figure one out!
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1.1 Exercises

Write down a formula and/or a recurrence relation for the following sequences.

1. 23, 23, 23, 23, 23, 23, . . .

2. 0, 1, 8, 27, 64, 125, 216, . . .

3. 7, 8, 15, 34, 71, 132, 223, . . .

4. 0, 1, 0,−1, 0, 1, 0,−1, . . .

5. 1, 2, 6, 24, 120, 720, . . .

6. 1, 7, 19, 37, 61, 91, . . .
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1.2 Solutions

1. 23, 23, 23, 23, 23, 23, . . .

an = 23; a1 = 23, an = an−1 for n > 1

2. 0, 1, 8, 27, 64, 125, 216, . . .

bn = n3; b0 = 0, bn+1 = bn + zn

3. 7, 8, 15, 34, 71, 132, 223, . . .

cn = bn + 7 = n3 + 7; c0 = 7, cn+1 = cn + zn

4. 0, 1, 0,−1, 0, 1, 0,−1, . . .

xn = sin
(

nπ

2

)

5. 1, 2, 6, 24, 120, 720, . . .

yn = n!

6. 1, 7, 19, 37, 61, 91, . . .

zn = bn+1 − bn = 3n2 + 3n + 1; z0 = 1, zn = zn−1 + 6n for n > 1
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2 The Difference Operator

How did the exercises go? My guess is that you were able to write down formulae
for exercises 1 through 5 quickly, but only came up with a recurrence relation
for exercise 6. What is hard about exercise 6? You have probably seen the
other five sequences before (or at least sequences very similar) and as a result
you already have a good intuition for the numbers appearing in these sequences.
But the sequence in exercise 6 is not so common. Let’s look at it again:

1, 7, 19, 37, 61, 91, . . .

Let’s call the nth term in this sequence zn (here we will assume z0 = 1, z1 = 7,
etc.). Is this sequence related to any of the other sequences from the exercises?

Surprisingly (or not), it is related to the sequence in exercise 2. Let bn be
this sequence. We can easily spot the formula for bn:

bn = n3.

Now what was the recurrence relation you came up with for bn? One recurrence
relation is

b0 = 0, bn+1 = bn + zn (n ≥ 0).

Another way to look at this is that the difference between the (n+1)th and nth
element of the sequence bn is the nth element in the sequence zn:

bn+1 − bn = zn (n ≥ 0).

Therefore, the formula for zn is

zn = bn+1 − bn

= (n + 1)3 − n3

= n3 + 3n2 + 3n + 1 − n3

= 3n2 + 3n + 1.

We have a name for this relationship between the sequences bn and zn. We
say that the sequence zn is the difference of the sequence bn and write

∆bn ≡ bn+1 − bn = zn

and call ∆ the difference operator.
Now notice something else. Let cn represent the nth element of the sequence

in exercise 3. It is clear that
cn = n3 + 7.

What is ∆cn?

∆cn = cn+1 − cn

= (n + 1)3 + 7 − (n3 + 7)

= n3 + 3n2 + 3n + 1 + 7 − n3 − 7

= 3n2 + 3n + 1

= zn.
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Wow! The difference of cn is again zn. At first this may seem surprising, but
actually it is quite obvious given the relationship between bn and cn.

What are the differences of the other sequences in the exercises? Let an be
the sequence in exercise 1. Then an = 23 and

∆an = an+1 − an = 23 − 23 = 0.

Let xn be the sequence in exercise 4. Then xn = sin(nπ/2) and

∆xn = xn+1 − xn

= sin
(

(n + 1)
π

2

)

− sin
(

n
π

2

)

= sin
(

n
π

2
+

π

2

)

− sin
(

n
π

2

)

= sin
(

n
π

2

)

cos
(π

2

)

− cos
(

n
π

2

)

sin
(π

2

)

− sin
(

n
π

2

)

= sin
(

n
π

2

)

· 0 − cos
(

n
π

2

)

· 1 − sin
(

n
π

2

)

= − cos
(

n
π

2

)

− sin
(

n
π

2

)

.

Using this formula to compute the first few elements of the difference sequence
gives us

∆x0 = −1, ∆x1 = −1, ∆x2 = 1, ∆x3 = 1, ∆x4 = −1, ∆x5 = −1, ∆x6 = 1, ∆x7 = 1, . . .

which is exactly what we expect.
Let yn represent the nth element in the sequence of exercise 5. Then yn = n!,

and

∆yn = yn+1 − yn

= (n + 1)! − n!

= (n + 1) · n! − n!

= (n + 1 − 1) · n!

= n · n!

Finally, we know that zn = 3n2 + 3n + 1. Thus

∆zn = zn+1 − zn

= 3(n + 1)2 + 3(n + 1) + 1 − (3n2 + 3n + 1)

= 3(n2 + 2n + 1) + 3n + 3 + 1 − 3n2 − 3n − 1

= 3n2 + 6n + 3 + 3n + 3 + 1 − 3n2 − 3n− 1

= 6n + 6

= 6(n + 1)

Isn’t this fun?!?
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2.1 Exercises

Compute the difference of each of the following sequences.

1. n4

2. en

3. ln(n)

4. n3 ≡ n!
(n−3)! for n ≥ 3

5.
(

n

3

)

≡ n!
(n−3)!3! for n ≥ 3
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2.2 Solutions

1. ∆n4 = (n + 1)4 −n4 = n4 + 4n3 + 6n2 + 4n + 1−n4 = 4n3 + 6n2 + 4n +1

2. ∆en = en+1 − en = e · en − en = (e − 1)en

3. ∆ ln(n) = ln(n + 1) − ln(n) = ln
(

n+1
n

)

= ln
(

1 + 1
n

)

≈ 1
n

4.

∆n3 = (n + 1)3 − n3

=
(n + 1)!

(n + 1 − 3)!
− n!

(n − 3)!

=
(n + 1)!

(n − 2)!
− (n − 2) · n!

(n − 2)!

=
(n + 1) · n! − (n − 2) · n!

(n − 2)!

=
(n + 1 − (n − 2)) · n!

(n − 2)!

= 3
n!

(n − 2)!

= 3n2

5.

∆

(

n

3

)

=

(

n + 1

3

)

−
(

n

3

)

=
(n + 1)!

(n + 1 − 3)!3!
− n!

(n − 3)!3!

=
1

3!

[

(n + 1)!

(n − 2)!
− n!

(n − 3)!

]

=
1

3!
· ∆n3

=
1

3!
· 3 n!

(n − 2)!

=
n!

(n − 2)!2!

=

(

n

2

)
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3 More on the Difference Operator

This is fun, isn’t it? We now prove an important theorem about the difference
operator.

Theorem 1. Let an and bn be sequences, and let c be any number. Then

1. ∆(an + bn) = ∆an + ∆bn, and

2. ∆(c · an) = c · ∆an.

Proof. We simply calculate

∆(an + bn) = (an+1 + bn+1) − (an + bn)

= (an+1 − an) + (bn+1 − bn)

= ∆an + ∆bn

and

∆(c · an) = c · an+1 − c · an

= c · (an+1 − an)

= c · ∆an

In the language of mathematics, Theorem 1 tells us that the difference op-
erator is a linear operator. This is a very convenient property for an operator
to have, as will become evident in the following proposition.

Proposition 1 (The difference of a polynomial). Let an be a polynomial

in n of degree k ≥ 1. Then ∆an is a polynomial of degree k − 1.

We will begin by proving a short lemma.

Lemma 1. ∆nk =
∑

k−1
i=0

(

k

i

)

ni for all k = 1, 2, 3, . . ..

Proof. By the binomial theorem

(n + 1)k =

k
∑

i=0

(

k

i

)

ni

=

(

k

0

)

+

(

k

1

)

n +

(

k

2

)

n2 + · · · +
(

k

k − 1

)

nk−1 +

(

k

k

)

nk.
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Notice
(

k

k

)

= k!
(k−k)!k! = 1 so

∆nk = (n + 1)k − nk

=

k
∑

i=0

(

k

i

)

ni − nk

=

k−1
∑

i=0

(

k

i

)

ni +

(

k

k

)

nk − nk

=

k−1
∑

i=0

(

k

i

)

ni

Proof of Proposition 1. If an is a polynomial in n of degree k, then

an =

k
∑

i=0

cin
i = c0 + c1n + c2n

2 + · · · + ck−1n
k−1 + cknk

for some constants c0, c1, . . . , ck where ck 6= 0. Then by the linearity of the
difference opeartor

∆an = ∆

k
∑

i=0

cin
i =

k
∑

i=0

ci∆ni.

We just saw in Lemma 1 that ∆ni is a polynomial of degree i− 1 for i ≥ 1. For
i = 0, ∆n0 = ∆1 = 0. Therefore, ∆an is the sum of polynomials of degrees 0
through k − 1. Thus ∆an is a polynomial of degree k − 1.

Now it is your turn to compute the difference of a few general sequences.
Use the linearity of the difference operator when possible.
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3.1 Exercises

Compute the difference of the following sequences. Here b > 0, c is a constant
and k is a natural number such that 1 ≤ k ≤ n.

1. c · bn (exponential sequence)

2. c · logb(n) (logarithmic sequence)

3. nk = n!
(n−k)! (falling factorial sequence)

4.
(

n

k

)

= n!
(n−k)!k! (binomial coefficient sequence)
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3.2 Solutions

1.

∆c · bn = c∆bn

= c(bn+1 − bn)

= c(b · bn − bn)

= c(b − 1)bn

2.

∆c log
b
(n) = c∆log

b
(n)

= c (logb(n + 1) − logb(n))

= c log
b

(

n + 1

n

)

= c logb

(

1 +
1

n

)

3.

∆nk = (n + 1)k − nk

=
(n + 1)!

(n + 1 − k)!
− n!

(n − k)!

=
(n + 1)!

(n + 1 − k)!
− (n + 1 − k) · n!

(n + 1 − k)!

=
(n + 1) · n! − (n + 1 − k) · n!

(n + 1 − k)!

=
(n + 1 − (n + 1 − k)) · n!

(n + 1 − k)!

=
k · n!

(n + 1 − k)!

= k
n!

(n − (k − 1))!

= knk−1
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4. This follows easily from the previous exercise since
(

n

k

)

= n!
(n−k)!k! = 1

k!n
k:

∆

(

n

k

)

= ∆
1

k!
nk

=
1

k!
∆nk

=
k

k!
nk−1

=
1

(k − 1)!

n!

(n − (k − 1))!

=
n!

(n − (k − 1))!(k − 1)!

=

(

n

k − 1

)

One could also see this by considering Pascal’s triangle.
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3.3 Take-Home Exercises

For the first three exercises, it is helpful to recall that

nk =
n!

(n − k)!
= n(n − 1)(n − 2) · · · (n − k + 2)(n − k + 1)

That is, nk is a polynomial in n of degree k.

1. Give the formula for a sequence an such that ∆an = n.
(hint: notice n = n1 and recall that ∆n2 = 2n1)

2. Give the formula for a sequence bn such that ∆bn = n2.
(hint: notice n2 = n2 + n1)

15



3. Give the formula for a sequence cn such that ∆cn = n3.
(hint: write n3 as a linear combination of n3, n2 and n1)

4. Give the formula for a sequence dn such that ∆dn = dn.
(hint: consider an exponential sequence)
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3.4 Solutions to Take-Home Exercises

1. an = 1
2n2 = n(n−1)

2 , for example

2. bn = 1
3n3 + 1

2n2 = n(n−1)(2n−1)
6 , for example

3. cn = 1
4n4 + n3 + 1

2n2 = n
2(n−1)2

4 , for example

4. dn = 2n, for example
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