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1 The Difference Equation ∆an = n
k

The Take Home exercises are examples of difference equations. As you might
guess, a difference equation is an equation that contains sequence differences.
We solve a difference equation by finding a sequence that satisfies the equation,
and we call that sequence a solution of the equation.

The first three Take Home exercises ask for the solutions to difference equa-
tions of the form

∆an = nk

where k is some natural number. As the solutions hinted (and you may have
found for yourself), these equations are very easy to solve if we can express nk

in terms of falling factorials. Recall that a falling factorial is defined as

nk =
n!

(n − k)!
= n(n − 1)(n − 2) · · · (n − k + 2)(n − k + 1).

Thus

n0 = 1

n1 = n

n2 = n(n − 1) = n2 − n

n3 = n(n − 1)(n − 2) = n3 − 3n2 + 2n

...

Using these relationships, we can write

1 = n0

n = n1

n2 = n2 − n + n = n2 + n1

n3 = n3 − 3n2 + 2n + 3(n2 − n) + n = n3 + 3n2 + n1

...
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and if we had the time, we could write every monomial nk as a linear combination
of the falling factorials n0, n1, . . . , nk.

How does this help us find a solution to ∆an = nk? Simply because the
difference equation ∆bn = nk is really easy to solve. Remember that

∆nk+1 = (k + 1)nk

when k ≥ 0. Thus

bn =
1

k + 1
nk+1

is a solution of ∆bn = nk.
So, to solve ∆cn = n, for example, we just remember that n = n1 and solve

∆cn = n1

which has

cn =
1

2
n2

as a solution.
To solve ∆dn = n2, we write n2 = n2 + n1 and solve

∆dn = n2 + n1

which has

dn =
1

3
n3 +

1

2
n2

as a solution.
To solve ∆en = n3, we write n3 = n3 + 3n2 + n1 and solve

∆en = n3 + 3n2 + n1

which has

en =
1

4
n4 + n3 +

1

2
n2

as a solution.
You may be wondering whether or not these are the only solutions to these

difference equations. In fact, they are not. To find out what the other solutions
are, we need to a few results.

Lemma 1. The only solutions to the difference equation ∆an = 0 are the

constant sequences an = c for some number c.

Proof. ∆an = 0 means an+1 − an = 0, or an+1 = an, for all n. Thus a0 = a1 =
a2 = · · · = an = · · · .

Theorem 1. Let an and bn be sequences such that ∆an = ∆bn. Then an =
bn + c for some number c.
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Proof. If ∆an = ∆bn, then by the linearity of ∆,

0 = ∆an − ∆bn = ∆(an − bn).

So the difference of the sequence an − bn is zero. By Lemma 1, an − bn is a
constant sequence; i.e. an − bn = c for some number c. This implies an =
bn + c.

This theorem is really important and useful. It tells us that if we know
just one solution of ∆an = zn, we actually know all of the solutions, and those
solutions are pn + c, where pn is some particular solution that we know, and c
is any constant.

Hence all the solutions of ∆cn = n are

cn =
1

2
n2 + c,

all the solutions of ∆dn = n2 are

dn =
1

3
n3 +

1

2
n2 + c,

and all of the solutions of ∆en = n3 are

en =
1

4
n4 + n3 +

1

2
n2 + c,

where c is any constant.
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1.1 Exercises

Find all the solutions for the following difference equations. You may leave your
solution in terms of falling factorials.

1. ∆an = n4

2. ∆bn = 2n2 − n + 4
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1.2 Solutions

1. We begin by noting that

n4 = n(n − 1)(n − 2)(n − 3) = n4 − 6n3 + 11n2 − 6n

so

n4 = n4 − 6n3 + 11n2 − 6n + 6(n3 − 3n2 + 2n) + 7(n2 − n) + n

= n4 + 6n3 + 7n2 + n1

Thus a solution of ∆an = n4 is

an =
1

5
n5 +

3

2
n4 +

7

3
n3 +

1

2
n2.

Therefore, all the solutions are represented by

an + c =
1

5
n5 +

3

2
n4 +

7

3
n3 +

1

2
n2 + c

where c is any constant.

2. We write

2n2 − n + 4 = 2(n2 + n1) − n1 + 4n0

= 2n2 − n1 + 4n0.

Thus a solution of ∆bn = 2n2 − n + 4 is

bn =
2

3
n3 −

1

2
n2 + 4n1.

Therefore, all the solutions are represented by

bn + c =
2

3
n3 −

1

2
n2 + 4n1 + c

where c is any constant.
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2 The Difference Equation ∆an = an

We now turn our attention to the last Take Home exercise. It asks us to find a
solution of the following difference equation:

∆an = an.

We recall from the last lecture that

∆c · bn = c(b − 1)bn

for any number b and constant c. This is exactly what we want as long as
b − 1 = 1, that is, b = 2. Thus c2n is a solution to our difference equation, for
any constant c.

Are the solutions c2n the only solution to ∆an = an? We analyze this
question as follows. The difference equation ∆an = an means an+1 − an = an,
or

an+1 − 2an = 0.

This is almost a difference equation. Can we somehow manipulate this equation
to make it a difference equation? We can by dividing through the entire equation
by 2n+1:

an+1 − 2an = 0
an+1

2n+1
−

an

2n
= 0 (divide by 2n+1)

∆
an

2n
= 0

Look at that, a difference equation! By Lemma 1, an/2n = c for some number
c. Therefore

an = c2n.

This represents all the solutions of ∆an = an. We state this as a theorem for
convenience:

Theorem 2. The only solutions of the difference equation ∆an = an are an =
c2n, where c is a constant.
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2.1 Exercises

1. Find all the solutions of the difference equation ∆an = λan, where λ is
some real number. What happens to the solutions when λ = −1?

2. Find a solution to the difference equation ∆bn = bn + 1.
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2.2 Solutions

1. The solutions of the difference equation ∆an = λan are

(a) an = c(1 + λ)n when λ 6= −1 (here c is an arbitrary constant);

(b) the zero sequence an = 0 when λ = −1.

Proof. ∆an = λan is equivalent to the equation

an+1 − (1 + λ)an = 0.

If λ 6= −1, then 1 + λ 6= 0, and we can divide through our equation by
(1 + λ)n+1, giving us the difference equation

∆
an

(1 + λ)n
= 0.

By Lemma 1, an

(1+λ)n
= c for some constant c, and so

an = c(1 + λ)n.

If λ = −1, then we see that

0 = an+1 − (1 + λ)an = an+1

for all n.

2. bn = −1, for example
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3 The Difference Equation ∆an = an + 1

Let’s take a look at the difference equation of exercise 2.1.2:

∆an = an + 1.

Were you able to come up with a solution? Our intuition tells us that the
solutions of this equation should somehow be related to the solutions of ∆an =
an, namely c2n. The next theorem tells us how they are related.

Theorem 3. Let pn be any solution of the difference equation ∆an = an + 1.
If bn is any other solution, then bn = pn + c2n for some constant c.

Proof. If pn and bn be are both solutions of ∆an = an +1, then by the linearity
of ∆

∆(bn − pn) = ∆bn − ∆pn = bn + 1 − (pn + 1) = bn − pn.

Thus by Theorem 2, bn − pn = c2n for some constant c. Adding pn to both
sides of this equation gives

bn = pn + c2n.

This theorem is really useful. It tells us that if we know just one solution of
the difference equation ∆an = an + 1, we actually know them all.

So how do we come up with a particular solution pn of ∆an = an + 1. The
theory of how to do this in general is a little too advanced at this point. So
what else can we do? We could try a sequence and hope we get lucky! Let’s
try a constant sequence pn = d for some constant d. We know ∆d = 0, so the
difference equation yields 0 = d+1, or d = −1. Wow! What luck! The constant
sequence pn = −1 solves the difference equation. By Theorem 3, we know that
all of the solutions are of the form

an = pn + c2n = c2n − 1.
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3.1 Exercises

1. Find all the solutions of the difference equation ∆an = λan +1, where λ is
some real number. What happens to the solutions when λ = 0 or λ = −1?

2. Find all the solutions of the difference equation ∆bn = bn + 2.
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3.2 Solutions

1. The solutions to the difference equation ∆an = λan + 1 are

(a) an = c(1 + λ)n − 1 when λ 6= −1 and λ 6= 0, where c is any constant;

(b) an = n + c when λ = 0, where c is any constant;

(c) the constant sequence an = 1 when λ = −1.

Proof. We already saw in Exercise 2.1.1 that the solutions of ∆dn = λdn

are

(a) c(1 + λ)n when λ 6= −1, for any constant c, and

(b) the zero sequence 0 when λ = −1.

Notice that if λ 6= 0, then −1
λ

is a particular solution of our difference
equation. By a theorem similar to Theorem 3,

c(1 + λ)n −
1

λ

represents all the solutions of ∆an = λan + 1 when λ 6= −1 and λ 6= 0.

Of course, when λ = 0, our difference equation reduces to ∆an = 1, which
we can solve by the method of falling fractions, since 1 = n0. Thus n + c
represents all solutions in this case.

When λ = −1, we see that

1 = an+1 − (1 + λ)an = an+1

for all n.

2. The constant sequence −2 is a particular solution of ∆bn = bn + 2 (try
it!). Therefore, by a theorem similar to Theorem 3, c2n − 2 represents all
the solutions of ∆bn = bn + 2, where c is any constant.

11



4 The Tower of Hanoi

We are now in position to solve an old and interesting mathematical puzzle –
The Tower of Hanoi.

The Tower of Hanoi (sometimes referred to as the Tower of Brahma or the
End of the World Puzzle) was invented by the French mathematician, Edouard
Lucas, in 1883. He was inspired by a legend that tells of a Hindu temple where
the pyramid puzzle might have been used for the mental discipline of young
priests. Legend says that at the beginning of time the priests in the temple were
given a stack of 64 gold disks, each one a little smaller than the one beneath
it. Their assignment was to transfer the 64 disks from one of the three poles to
another, with one important proviso – a large disk could never be placed on top
of a smaller one. The priests worked very efficiently, day and night. When they
finished their work, the myth said, the temple would crumble into dust and the
world would vanish 1.

The mathematical puzzle is this – what is the least number of moves required
to move n disks from the first pole to the last pole according to the rules given
in the last paragraph? Let tn represent this number. It would be great if we
could come up with some recurrence relation for this sequence. Notice that if
we have n + 1 disks, we cannot move the bottom disk off the first pole until
we have moved all the others off of it onto the other poles. Let’s move the top
n disks off to the second pole. That takes tn moves. Then we can move the
bottom disk to the third pole, requiring one move. We then move the n disks
from the second pole onto the third pole, requiring another tn moves. Thus

tn+1 = tn + 1 + tn = 2tn + 1.

Subtracting tn from both sides of this equation gives

∆tn = tn + 1

which is exactly the difference equation we just solved! Hence

tn = c2n − 1

for some constant c. We know that t1 = 1 by trying it ourselves (duh!), and we
use this equation to compute c:

1 = t1 = c21 − 1 = 2c − 1

or c = 1. Therefore,
tn = 2n − 1.

Remember the legend said that the priests in the temple had 64 disks to
work with. The number of moves required to move these disks from the first
pole to the third pole is therefore

t64 = 18, 446, 744, 073, 709, 551, 615.

1http://www.lawrencehallofscience.org/Java/Tower/index.html
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This is a huge number! If the priests worked day and night, making one move
every second it would take slightly more than 580 billion years to accomplish
the job! This is an enormous amount of time, considering that the generally
accepted age of the Earth (and the rest of our solar system) is about 4.55 billion
years 2.

2http://www.talkorigins.org/faqs/faq-age-of-earth.html
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