MTH 370, Fall 2009
 Homework 1

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Consider a population of cells that divides synchronously, and that at each division a cell divides into $k \geq 1$ cells. In addition, suppose that immediately after each division a fraction p of the cells die.
(a) Write down the first-order linear difference equation describing this cell population.
(b) Solve the difference equation.
(c) Determine for what value of p the number of cells neither grows nor decays.
2. Consider a population of cells that divides synchronously, and that at each division a cell divides into $k \geq 1$ cells. In addition, suppose that immediately after each division, a number h of the cells die.
(a) Write down the first-order linear difference equation describing this cell population.
(b) Solve the difference equation.
(c) Determine for what value of h the number of cells neither grows nor decays.
3. Consider the nonlinear difference equation

$$
\begin{equation*}
c_{n+1}=r c_{n} \mathrm{e}^{-c_{n}} \tag{1}
\end{equation*}
$$

Here c_{n} is not restricted to the interval $[0,1]$ but can be any nonnegative number.
(a) Find the fixed points of (1). [Hint: there are two.]
(b) Determine the stability of each fixed point.
(c) Carefully draw a cobweb diagram for $r=2$ and $c_{0}=0.1$ and show that your diagram agrees with answers for parts (a) and (b).

