## MTH 370, Fall 2009 <br> Solutions to Homework 2

1. Does the difference equation

$$
c_{n+1}=c_{n}\left(3.5-35 c_{n}\right)
$$

have a solution of period 2 ? If so, is it stable?

## Solution:

Factor 3.5 out of the RHS of $c_{n+1}=c_{n}\left(3.5-35 c_{n}\right)$ to get

$$
c_{n+1}=3.5 c_{n}\left(1-10 c_{n}\right)
$$

Multiply both sides of this equation by 10 to get

$$
10 c_{n+1}=3.5\left(10 c_{n}\right)\left(1-10 c_{n}\right)
$$

Now set $b_{n}=10 c_{n}$ to get

$$
b_{n+1}=3.5 b_{n}\left(1-b_{n}\right)
$$

This is our original difference equation in normal form, hence $r=3.5$. Recall from class that $r_{2}=3$ and $r_{4} \approx 3.45$, hence

$$
r_{2}<r_{4}<3.5
$$

and therefore period- 2 solutions exist but are unstable.
2. Consider again the nonlinear difference equation

$$
\begin{equation*}
c_{n+1}=r c_{n} \mathrm{e}^{-c_{n}} \tag{1}
\end{equation*}
$$

Find the point $r_{2}$ such that solutions of period 2 exist for $r \geq r_{2}$ and do not exist for $r<r_{2}$.

## Solution:

To show that a period- 2 solution exists, we need to show that the equation

$$
c=f(f(c))=r^{2} c \mathrm{e}^{-c\left(1+r e^{-c}\right)}
$$

has four solutions, two of which are the fixed points $c=0$ and $c=\ln (r)$ of (1) (see Homework 1), and two of which are the two points in the period-2 solution. In (1), either $c=0$ or

$$
\begin{equation*}
2 \ln (r)=c\left(1+r e^{-c}\right) \tag{2}
\end{equation*}
$$

We know $c=\ln (r)$ is a solution of (2), so we need to show (2) has two more solutions than this. We can do this graphically. In the figure below I have shown the LHS and RHS of (2) plotted for specific values of $r$. Where these graphs cross is a solution to (2).


The graphs always intersect at $c=\ln (r)$, and at a certain value $r=r_{2}$ (indicated in red) the function $g(c)=c\left(1+r e^{-c}\right)$ intersects the horizontal line $2 \ln (r)$ only once (so at $c=\ln (r)$ ), and at this point of intersection the derivative of $g$ is zero. For $r<r_{2}$ there is only one solution of (2), but for $r>r_{2}$ there are three solutions. We calculate

$$
g^{\prime}(c)=1+(1-c) r e^{-c}
$$

hence

$$
g^{\prime}\left(\ln \left(r_{2}\right)\right)=2-\ln \left(r_{2}\right)=0 \text { if and only if } r_{2}=e^{2} .
$$

Therefore, a solution of period-2 exists for $r>r_{2}=e^{2}$.
3. Consider the following one-dimensional nonlinear difference equation,

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right), \tag{3}
\end{equation*}
$$

where $f$ is the tent map,

$$
f(x)= \begin{cases}2 x, & x \in\left[0, \frac{1}{2}\right], \\ 2(1-x), & x \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$


(a) Find the fixed points of equation (3) and determine their stability.
(b) Equation (3) has a solution of period two. Find the two points in this solution and determine the solution's stability.

## Solution:

(a) $x^{*}=f\left(x^{*}\right) \Rightarrow x^{*}=0, x^{*}=\frac{2}{3}$

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
2, & x \in\left[0, \frac{1}{2}\right], \\
-2, & x \in\left(\frac{1}{2}, 1\right] .
\end{array} \Rightarrow\left|f^{\prime}\left(x^{*}\right)\right|=2>1 \Rightarrow\right. \text { both fixed points are unstable. }
$$

(b)

$$
\begin{gathered}
x=f^{2}(x)=\left\{\begin{array}{ll}
4 x, & x \in\left[0, \frac{1}{4}\right], \\
4\left(\frac{1}{2}-x\right), & x \in\left(\frac{1}{4}, \frac{1}{2}\right], \\
4\left(x-\frac{1}{2}\right), & x \in\left(\frac{1}{2}, \frac{3}{4}\right], \\
4(1-x), & x \in\left(\frac{3}{4}, 1\right] .
\end{array} \Rightarrow x^{* *}=\frac{2}{5}, x^{* *}=\frac{4}{5} .\right. \\
\left(f^{2}\right)^{\prime}(x)= \begin{cases}4, & x \in\left[0, \frac{1}{4}\right], \\
-4, & x \in\left(\frac{1}{4}, \frac{,}{2}\right], \\
4, & x \in\left(\frac{1}{2}, \frac{3}{4}\right], \\
-4, & x \in\left(\frac{3}{4}, 1\right] .\end{cases}
\end{gathered}
$$

