MTH 370, Fall 2009

Solutions to Homework 3

1. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

(a) Show that $A B$ does not equal $B A$.
(b) Find a matrix $C \neq A$ that commutes with A, that is, $A C=C A$.

Solution:

(a)

$$
A B=\left[\begin{array}{ll}
4 & 6 \\
4 & 6
\end{array}\right] \neq\left[\begin{array}{ll}
3 & 3 \\
7 & 7
\end{array}\right]=B A
$$

(b) Any multiple $C=m I$ of the identity matrix works:

$$
A C=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]=\left[\begin{array}{ll}
m & m \\
m & m
\end{array}\right]=\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=C A
$$

2. Let

$$
A=\left[\begin{array}{ll}
7 & 2 \\
2 & 7
\end{array}\right]
$$

Find the eigenvectors and associated eigenvalues of A.
Solution: The characteristic equation is

$$
0=\operatorname{det}(A-\lambda I)=\lambda^{2}-14 \lambda+45=(\lambda-9)(\lambda-5)
$$

hence the eigenvalues are $\lambda_{+}=9$ and $\lambda_{-}=5$. The associated eigenvectors are

$$
\mathbf{x}_{+}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{-}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

3. Let

$$
A=\left[\begin{array}{cc}
0.5 & -2 \\
0 & 0.9
\end{array}\right]
$$

Find the eigenvectors and associated eigenvalues of A.
Solution: The characteristic equation is

$$
0=\operatorname{det}(A-\lambda I)=\lambda^{2}-1.4 \lambda+0.45=(\lambda-0.9)(\lambda-0.5)
$$

hence the eigenvalues are $\lambda_{+}=0.9$ and $\lambda_{-}=0.5$ (notice these are the same as the diagonal entries). The associated eigenvectors are

$$
\mathbf{x}_{+}=\left[\begin{array}{c}
-5 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{-}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

