MTH 370, Fall 2009 Homework 4

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Recall from class that the characteristic equation of the matrix A can be written

$$0 = \det(A - \lambda I) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A).$$

(a) Letting λ_+ and λ_- denote the two eigenvalues of A, prove that

$$\operatorname{tr}(A) = \lambda_{+} + \lambda_{-}$$
 and $\operatorname{det}(A) = \lambda_{+}\lambda_{-}$.

[Hint: Use the fact that λ_+ and λ_- are the two roots of the quadratic polynomial det $(A - \lambda I)$.]

(b) Verify that (a) is indeed true for the matrix

$$A = \begin{bmatrix} 7 & 2 \\ 2 & 7 \end{bmatrix}.$$

2. Let

$$A = \begin{bmatrix} 0 & 3 \\ 3 & -1 \end{bmatrix}$$

- (a) Compute the inverse A^{-1} of A.
- (b) Solve the following matrix equation for **x**:

$$A\mathbf{x} = \mathbf{b} = \begin{bmatrix} -9\\18 \end{bmatrix}$$

3. Consider the age-structured population model from class,

$$\mathbf{x}_{n+1} = M \mathbf{x}_n \tag{1}$$

where

$$M = \begin{bmatrix} p & q \\ k & 0 \end{bmatrix}$$
 and $\mathbf{x}_n = \begin{bmatrix} A_n \\ J_n \end{bmatrix}$.

- (a) Show that when p = 0.5, q = 0.1 and k = 2, the population will go extinct, no matter the initial size of the population.
- (b) Setting p = 0.5 and k = 2, find the critical value q_c such that if $q > q_c$ then the population grows, but if $q < q_c$ then the population goes extinct.