MTH 370, Fall 2009
 Homework 4

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Recall from class that the characteristic equation of the matrix A can be written

$$
0=\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
$$

(a) Letting λ_{+}and λ_{-}denote the two eigenvalues of A, prove that

$$
\operatorname{tr}(A)=\lambda_{+}+\lambda_{-} \quad \text { and } \quad \operatorname{det}(A)=\lambda_{+} \lambda_{-} .
$$

[Hint: Use the fact that λ_{+}and λ_{-}are the two roots of the quadratic polynomial $\operatorname{det}(A-\lambda I)$.]
(b) Verify that (a) is indeed true for the matrix

$$
A=\left[\begin{array}{ll}
7 & 2 \\
2 & 7
\end{array}\right]
$$

2. Let

$$
A=\left[\begin{array}{cc}
0 & 3 \\
3 & -1
\end{array}\right]
$$

(a) Compute the inverse A^{-1} of A.
(b) Solve the following matrix equation for \mathbf{x} :

$$
A \mathbf{x}=\mathbf{b}=\left[\begin{array}{c}
-9 \\
18
\end{array}\right]
$$

3. Consider the age-structured population model from class,

$$
\begin{equation*}
\mathbf{x}_{n+1}=M \mathbf{x}_{n} \tag{1}
\end{equation*}
$$

where

$$
M=\left[\begin{array}{ll}
p & q \\
k & 0
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{n}=\left[\begin{array}{c}
A_{n} \\
J_{n}
\end{array}\right] .
$$

(a) Show that when $p=0.5, q=0.1$ and $k=2$, the population will go extinct, no matter the initial size of the population.
(b) Setting $p=0.5$ and $k=2$, find the critical value q_{c} such that if $q>q_{c}$ then the population grows, but if $q<q_{c}$ then the population goes extinct.

