MTH 370, Fall 2009

Solutions to Homework 4

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Recall from class that the characteristic equation of the matrix A can be written

$$
0=\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
$$

(a) Letting λ_{+}and λ_{-}denote the two eigenvalues of A, prove that

$$
\operatorname{tr}(A)=\lambda_{+}+\lambda_{-} \quad \text { and } \quad \operatorname{det}(A)=\lambda_{+} \lambda_{-} .
$$

[Hint: Use the fact that λ_{+}and λ_{-}are the two roots of the quadratic polynomial $\operatorname{det}(A-\lambda I)$.]
(b) Verify that (a) is indeed true for the matrix

$$
A=\left[\begin{array}{ll}
7 & 2 \\
2 & 7
\end{array}\right]
$$

Solution:

(a) Since λ_{+}and λ_{-}are the roots of the characteristic polynomial, we know

$$
\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=\left(\lambda-\lambda_{+}\right)\left(\lambda-\lambda_{-}\right)=\lambda^{2}-\left(\lambda_{+}+\lambda_{-}\right) \lambda+\lambda_{+} \lambda_{-}
$$

Equating coefficients gives the result.
(b) Recall that the eigenvalues of A are $\lambda_{+}=9$ and $\lambda_{-}=5$, and in fact $\operatorname{tr}(A)=7+7=14=9+5$ and $\operatorname{det}(A)=7 \cdot 7-2 \cdot 2=45=9 \cdot 5$.
2. Let

$$
A=\left[\begin{array}{cc}
0 & 3 \\
3 & -1
\end{array}\right]
$$

(a) Compute the inverse A^{-1} of A.
(b) Solve the following matrix equation for \mathbf{x} :

$$
A \mathbf{x}=\mathbf{b}=\left[\begin{array}{c}
-9 \\
18
\end{array}\right]
$$

Solution:

(a) Using the formula from class

$$
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { if and only if } \quad A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

we compute $\operatorname{det}(A)=0(-1)-3^{2}=-9$ and

$$
A^{-1}=-\frac{1}{9}\left[\begin{array}{cc}
-1 & -3 \\
-3 & 0
\end{array}\right]
$$

(b)

$$
\mathbf{x}=A^{-1} \mathbf{b}=-\frac{1}{9}\left[\begin{array}{cc}
-1 & -3 \\
-3 & 0
\end{array}\right]\left[\begin{array}{c}
-9 \\
18
\end{array}\right]=\left[\begin{array}{cc}
-1 & -3 \\
-3 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3
\end{array}\right]
$$

3. Consider the age-structured population model from class,

$$
\begin{equation*}
\mathbf{x}_{n+1}=M \mathbf{x}_{n} \tag{1}
\end{equation*}
$$

where

$$
M=\left[\begin{array}{ll}
p & q \\
k & 0
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{n}=\left[\begin{array}{c}
A_{n} \\
J_{n}
\end{array}\right]
$$

(a) Show that when $p=0.5, q=0.1$ and $k=2$, the population will go extinct, no matter the initial size of the population.
(b) Setting $p=0.5$ and $k=2$, find the critical value q_{c} such that if $q>q_{c}$ then the population grows, but if $q<q_{c}$ then the population goes extinct.

Solution:

(a) Recall from class that the eigenvalues are

$$
\lambda_{ \pm}=\frac{p \pm \sqrt{p^{2}+4 q k}}{2} \approx 0.762,-0.262
$$

The absolute value of each is less than one, so the solution approaches $(A, J)=(0,0)$ as $n \rightarrow \infty$.
(b) The critical point $q=q_{c}$ solves the equation

$$
1=\left|\lambda_{+}\right|=\frac{0.5+\sqrt{0.25+8 q}}{2} \Rightarrow q_{c}=0.25
$$

The reason we only consider λ_{+}is that the q that solves $1=\left|\lambda_{-}\right|$is larger than q_{c}. Note that $\lambda_{+}>1$ if and only if $q>q_{c}$.

