MTH 370, Fall 2009
 Homework 7

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Solve the following systems of first-order linear ODEs. In each problem, classify the type and stability of the origin.
(a) $\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]$
(b) $\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}-2 & -1 \\ 1 & -2\end{array}\right]$
(c) $\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
2. Consider the system of first-order linear ODEs

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
-1 & 1 \tag{1}\\
0 & -1
\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(a) Solve (1) first by solving the second equation, and then plugging this into the first equation and solving it by integrating factors.
(b) Now try to solve (1) by calculating $\mathrm{e}^{A t}$. If you have trouble, explain why. Can you calculate $\mathrm{e}^{A t}$ directly from its Taylor series?

