MTH 370, Fall 2009
 Solutions to Homework 7

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Solve the following systems of first-order linear ODEs. In each problem, classify the type and stability of the origin.
(a) $\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]$
(b) $\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}-2 & -1 \\ 1 & -2\end{array}\right]$
(c) $\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Solutions:

(a) The eigenvalues of A are 1 and 4, so the origin is an unstable node.

$$
\begin{aligned}
\mathbf{x}(t)=e^{A t} \mathbf{x}(0) & =\left[\begin{array}{c}
(2 x(0)-y(0)) e^{t}+(x(0)+y(0)) e^{4 t} \\
-(2 x(0)-y(0)) e^{t}+2(x(0)+y(0)) e^{4 t}
\end{array}\right] \\
& =(2 x(0)-y(0)) e^{t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(x(0)+y(0)) e^{4 t}\left[\begin{array}{c}
1 \\
2
\end{array}\right]
\end{aligned}
$$

(b) The eigenvalues of A are $-2+i$ and $-2-i$, so the origin is a stable focus.

$$
\mathbf{x}(t)=e^{A t} \mathbf{x}(0)=e^{-2 t}\left[\begin{array}{l}
x(0) \cos (t)-y(0) \sin (t) \\
x(0) \sin (t)+y(0) \cos (t)
\end{array}\right]
$$

(c) The eigenvalues of A are $\frac{5+\sqrt{33}}{2}>0$ and $\frac{5-\sqrt{33}}{2}<0$, so the origin is a saddle node. Solutions way too ugly...
2. Consider the system of first-order linear ODEs

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
-1 & 1 \tag{1}\\
0 & -1
\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(a) Solve (1) first by solving the second equation, and then plugging this into the first equation and solving it by integrating factors.
(b) Now try to solve (1) by calculating $\mathrm{e}^{A t}$. If you have trouble, explain why. Can you calculate $\mathrm{e}^{A t}$ directly from its Taylor series?

Solutions:

(a) The second equation is

$$
\frac{d y}{d t}=-y \Rightarrow y(t)=e^{-t} y(0)=e^{-t}
$$

The first equation is then

$$
\frac{d x}{d t}=-x+y=-x+e^{-t} \Rightarrow x(t)=e^{-t}(t+x(0))=e^{-t}(t+1) \text { using an integration factor. }
$$

Therefore, the solution is

$$
\mathbf{x}(t)=e^{-t}\left[\begin{array}{c}
t+1 \\
1
\end{array}\right]
$$

(b) The matrix A has a double eigenvalue $\lambda=-1$, however we can only find one eigenvector

$$
\mathbf{0}=(A-\lambda I) \mathbf{v}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v+2
\end{array}\right] \Rightarrow \mathbf{v}=v_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

so we can't use the method from class. Notice however that

$$
(A t)^{n}=\left[\begin{array}{cc}
(-t)^{n} & -n(-t)^{n} \\
0 & (-t)^{n}
\end{array}\right],
$$

hence

$$
e^{A t}=\sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{1}{n!}\left[\begin{array}{cc}
(-t)^{n} & -n(-t)^{n} \\
0 & (-t)^{n}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & t e^{-t} \\
0 & e^{-t}
\end{array}\right]=e^{-t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right],
$$

so the solution is

$$
\mathbf{x}(t)=e^{A t} \mathbf{x}(0)=e^{-t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=e^{-t}\left[\begin{array}{c}
t+1 \\
1
\end{array}\right] .
$$

