MTH 370, Fall 2009 Solutions to Homework 8

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. One unrealistic feature of the the Lotka-Volterra model is that it the prey population grows without bound in the absence of predators. We can remedy this fault by introducing a logistic-type term for the prey's reproduction rate:

$$
\begin{aligned}
& \frac{d x}{d t}=(a(K-x)-b y) x \\
& \frac{d y}{d t}=(d x-c) y
\end{aligned}
$$

where $K>0$ is the carrying capacity for the prey population. Analyze this modified Lotka-Volterra model the same way we did the original Lotka-Volterra model in class. That is, find the equilibria and determine their stability type, find the x - and y-nullclines and determine in which direction solutions traverse them, and then plot all this information, including a few representative solutions, in the phase-plane.
Solutions: The equilibria satisfy

$$
\begin{aligned}
& 0=\left(a\left(K-x^{*}\right)-b y^{*}\right) x^{*} \\
& 0=\left(d x^{*}-c\right) y^{*}
\end{aligned}
$$

The second equation implies that either $y^{*}=0$ or $x^{*}=c / d$.
If $y^{*}=0$, then the first equation becomes

$$
0=a\left(K-x^{*}\right) x^{*} \Rightarrow x^{*}=0 \text { or } K
$$

so $\left(x^{*}, y *\right)=(0,0)$ and $\left(x^{*}, y^{*}\right)=(K, 0)$ are both equilibria.
If $y^{*} \neq 0$, then $x^{*}=c / d$ and the first equation becomes

$$
0=\left(a\left(K-\frac{c}{d}\right)-b y^{*}\right) \frac{c}{d} \Rightarrow y^{*}=\frac{a}{b}\left(K-\frac{c}{d}\right)
$$

hence $\left(x^{*}, y^{*}\right)=\left(\frac{c}{d}, \frac{a}{b}\left(K-\frac{c}{d}\right)\right)$ is also an equilibrium. This equilibrium is only biologically relevant if $K d>c$, and so we assume this from now on.
The Jacobian is

$$
J(x, y)=\left[\begin{array}{cc}
a(K-2 x)-b y & -b x \\
d y & d x-c
\end{array}\right]
$$

At the origin the Jacobian is

$$
J(0,0)=\left[\begin{array}{cc}
a K & 0 \\
0 & -c
\end{array}\right]
$$

therefore $\lambda_{+}=a K>0$ and $\lambda_{-}=-c<0$ and hence the origin is still a saddle node.
At $\left(x^{*}, y^{*}\right)=(K, 0)$ the Jacobian is

$$
J(K, 0)=\left[\begin{array}{cc}
-a K & -b K \\
0 & d K-c
\end{array}\right]
$$

therefore $\lambda_{+}=d K-c>0$ and $\lambda_{-}=-a K<0$ and hence this equilibrium is also a saddle node.
At $\left(x^{*}, y^{*}\right)=\left(\frac{c}{d}, \frac{a}{b}\left(K-\frac{c}{d}\right)\right)$ the Jacobian is

$$
J\left(\frac{c}{d}, \frac{a}{b}\left(K-\frac{c}{d}\right)\right)=\left[\begin{array}{cc}
-\frac{a c}{d} & -\frac{b c}{d} \\
\frac{a d}{b}\left(K-\frac{c}{d}\right) & 0
\end{array}\right]
$$

Since $\operatorname{tr}(J)=-a c / d<0$ and $\operatorname{det}(J)=a c(K-c / d)>0$, we know that the real part of the eigenvalues are both negative, hence this equilibrium is stable. Note that without further information we cannot determine if this equilibrium is a stable node or a stable focus since

$$
\lambda_{ \pm}=\frac{-a c / d \pm \sqrt{(a c / d)^{2}-4 a c(K-c / d)}}{2}
$$

and the discriminant can be either positive or negative.

