MTH 370, Fall 2009
 Homework 9

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Write down the mass-action equations for the following chemical reactions:
(a) $X+Y \xrightarrow{k} 2 Y$
(b) $2 X \xrightarrow{k} X+Y$
(c) $2 X+Y \xrightarrow{k} X+2 Y$
2. Consider the following chemical reactions:

$$
\begin{aligned}
A+X & \xrightarrow{k_{1}} 2 X \\
X+Y & \xrightarrow{k_{2}} 2 Y \\
Y & \xrightarrow{k_{3}} \emptyset
\end{aligned}
$$

Assuming the concentration of A is kept constant, show that the mass-action equations for these reactions are the same as the Loktka-Volterra model for predator-prey systems. Which chemical is the "prey" and which is the "predator"?
3. Consider the following chemical reactions:

$$
X \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} Y \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} Z
$$

(a) Write down the mass-action equations for the concentrations x, y and z, and show that $x+y+z$ is constant.
(b) Show that when $x+y+z=1$, the steady-state solution of the mass-action equations is a binomial distribution with parameter $p=\alpha /(\alpha+\beta)$.
(c) What kind of biological system might these reactions describe?

