MTH 370, Fall 2009

Solutions to Homework 9

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Write down the mass-action equations for the following chemical reactions:
(a) $X+Y \xrightarrow{k} 2 Y$
(b) $2 X \xrightarrow{k} X+Y$
(c) $2 X+Y \xrightarrow{k} X+2 Y$

Solutions:

(a)

$$
\begin{aligned}
& \frac{d x}{d t}=-k x y \\
& \frac{d y}{d t}=k x y
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{d x}{d t}=-k x^{2} \\
& \frac{d y}{d t}=k x^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{d x}{d t}=-k x^{2} y \\
& \frac{d y}{d t}=k x^{2} y
\end{aligned}
$$

2. Consider the following chemical reactions:

$$
\begin{array}{r}
A+X \xrightarrow{k_{1}} 2 X \\
X+Y \xrightarrow{k_{2}} 2 Y \\
Y \xrightarrow{k_{3}} \emptyset
\end{array}
$$

Assuming the concentration of A is kept constant, show that the mass-action equations for these reactions are the same as the Loktka-Volterra model for predator-prey systems. Which chemical is the "prey" and which is the "predator"?

Solutions:

$$
\begin{aligned}
& \frac{d x}{d t}=\left(k_{1} a-k_{2} y\right) x \\
& \frac{d y}{d t}=\left(k_{2} x-k_{3}\right) y
\end{aligned}
$$

X is the prey, Y is the predator.
3. Consider the following chemical reactions:

$$
X \underset{\beta}{\stackrel{2 \alpha}{\rightleftarrows}} Y \underset{2 \beta}{\stackrel{\alpha}{\rightleftarrows}} Z
$$

(a) Write down the mass-action equations for the concentrations x, y and z, and show that $x+y+z$ is constant.
(b) Show that when $x+y+z=1$, the steady-state solution of the mass-action equations is a binomial distribution with parameter $p=\alpha /(\alpha+\beta)$.
(c) What kind of biological system might these reactions describe?

Solutions:

(a)

$$
\begin{aligned}
& \frac{d x}{d t}=-2 \alpha x+\beta y \\
& \frac{d y}{d t}=2 \alpha x-(\alpha+\beta) y+2 \beta z \\
& \frac{d z}{d t}=\alpha y-2 \beta z
\end{aligned}
$$

Summing these equations together we get

$$
\frac{d(x+y+z)}{d t}=0 \Rightarrow x+y+z=\mathrm{constant}
$$

(b) In the first and third equations above, set the derivatives to zero and $y=1-x-z$ to get

$$
\begin{aligned}
& 0=-2 \alpha x^{*}+\beta\left(1-x^{*}-z^{*}\right) \\
& 0=\alpha\left(1-x^{*}-z^{*}\right)-2 \beta z^{*}
\end{aligned} \Rightarrow \quad \begin{aligned}
& (2 \alpha+\beta) x^{*}+\beta z^{*}=\beta \\
& \alpha x^{*}+(\alpha+2 \beta) z^{*}=\alpha
\end{aligned}
$$

Solving these yields

$$
\begin{gathered}
x^{*}=\left(\frac{\beta}{\alpha+\beta}\right)^{2}=(1-p)^{2}, \quad z^{*}=\left(\frac{\alpha}{\alpha+\beta}\right)^{2}=p^{2} \\
y^{*}=1-x^{*}-z^{*}=\frac{2 \alpha \beta}{(\alpha+\beta)^{2}}=2 p(1-p)
\end{gathered}
$$

hence this is a binomial distribution with parameter p (or $1-p$).
(c) For example, these equations models the kinetics of an ion channel comprised of two identical, independent subunits which open at a rate α and close at a rate β.

