MTH 370, Fall 2009

Homework 11

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Consider the following reactions:

$$
X \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} A, \quad B \xrightarrow{k_{2}} Y, \quad 2 X+Y \xrightarrow{k_{3}} 3 X
$$

(a) Write down the mass action equations for these reactions, treating the concentrations of A and B as positive constants.
(b) Show that, by making the change of variables

$$
u=\sqrt{\frac{k_{3}}{k_{1}}} x, \quad v=\sqrt{\frac{k_{3}}{k_{1}}} y, \quad \tau=k_{1} t
$$

the mass action equations of part (a) become

$$
\begin{align*}
& \frac{d u}{d \tau}=c-u+u^{2} v \\
& \frac{d v}{d \tau}=d-u^{2} v \tag{1}
\end{align*}
$$

where c and d are positive constants.
(c) Show that the system (1) has exactly one equilibrium, that this equilibrium is positive, and that it is repelling if and only if

$$
\begin{equation*}
2 d>(c+d)\left(1+(c+d)^{2}\right) \tag{2}
\end{equation*}
$$

(d) Assuming that the inequality (2) holds, show that the region D bounded by the four lines

$$
u=c, \quad v=0, \quad v=\frac{d}{c^{2}}, \quad v=\frac{d}{c^{2}}+c+d-u
$$

is a trapping region for the solutions of (1).
(e) Conclude that the region D contains a limit cycle.

